cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A247506 Generalized Fibonacci numbers: square array A(n,k) read by ascending antidiagonals, A(n,k) = [x^k]((1-Sum_{j=1..n} x^j)^(-1)), (n>=0, k>=0).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 5, 1, 0, 1, 1, 2, 4, 7, 8, 1, 0, 1, 1, 2, 4, 8, 13, 13, 1, 0, 1, 1, 2, 4, 8, 15, 24, 21, 1, 0, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 0, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 0
Offset: 0

Views

Author

Peter Luschny, Nov 02 2014

Keywords

Examples

			[n\k] [0][1][2][3][4] [5] [6] [7]  [8]  [9] [10]  [11]  [12]
   [0] 1, 0, 0, 0, 0,  0,  0,  0,   0,   0,   0,    0,    0
   [1] 1, 1, 1, 1, 1,  1,  1,  1,   1,   1,   1,    1,    1
   [2] 1, 1, 2, 3, 5,  8, 13, 21,  34,  55,  89,  144,  233  [A000045]
   [3] 1, 1, 2, 4, 7, 13, 24, 44,  81, 149, 274,  504,  927  [A000073]
   [4] 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401,  773, 1490  [A000078]
   [5] 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464,  912, 1793  [A001591]
   [6] 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492,  976, 1936  [A001592]
   [7] 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000  [A066178]
   [8] 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028  [A079262]
   [.] .  .  .  .  .   .   .   .    .    .    .     .     .
  [oo] 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048  [A011782]
.
As a triangular array, starts:
  1,
  1, 0,
  1, 1, 0,
  1, 1, 1, 0,
  1, 1, 2, 1, 0,
  1, 1, 2, 3, 1, 0,
  1, 1, 2, 4, 5, 1, 0,
  1, 1, 2, 4, 7, 8, 1, 0,
  1, 1, 2, 4, 8, 13, 13, 1, 0,
  1, 1, 2, 4, 8, 15, 24, 21, 1, 0,
  ...
		

Crossrefs

Programs

  • Maple
    A := (n,k) -> coeff(series((1-add(x^j, j=1..n))^(-1),x,k+2),x,k):
    seq(print(seq(A(n,k), k=0..12)), n=0..9);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k<0, 0, If[k==0, 1, Sum[A[n, j], {j, k-n, k-1}]]]; Table[A[n-k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 08 2019 *)

Formula

A(n, k) = Sum_{j=0..floor(k/(n+1))} (-1)^j*((k - j*n) + j + delta(k,0))/(2*(k - j*n) + delta(k,0))*binomial(k - j*n, j)*2^(k-j*(n+1)), where delta denotes the Kronecker delta (see Corollary 3.2 in Parks and Wills). - Stefano Spezia, Aug 06 2022

A364145 a(n) is the sum of the first 2*n nonzero n-bonacci numbers.

Original entry on oeis.org

0, 2, 7, 28, 116, 480, 1968, 8000, 32320, 130048, 521984, 2092032, 8377344, 33529856, 134164480, 536756224, 2147237888, 8589410304, 34358624256, 137436594176, 549750833152, 2199012769792, 8796071002112, 35184325951488, 140737391886336, 562949752094720
Offset: 0

Views

Author

Muhammad Adam Dombrowski and Greg Dresden, Jul 10 2023

Keywords

Comments

For our purposes, for n > 0 fixed we define the k-th n-bonacci number T(n,k) as equal to 0 for k <= 0, equal to 1 for k=1, and then equal to the sum of the previous n numbers for k > 1. For n=2, then, we get T(2,k) equal to F(n) = A000045(n), the Fibonacci numbers. For n=3, then, T(3,k) is the tribonacci numbers, and so on.
a(n) is thus defined as Sum_{k=1..2*n} T(n,k).

Examples

			For n=3, a(3) is the sum of the first 6 nonzero tribonacci numbers, found at A000073. This gives a(3) = 1 + 1 + 2 + 4 + 7 + 13 = 28.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[Series[x/(1 - Sum[x^i, {i, 1, n}]), {x, 0, k + 1}], k]; Table[Sum[T[n, k], {k, 1, 2n}], {n, 1, 30}]

Formula

a(n) = (2*4^n - (n-1)*2^n)/4 for n>=1.
a(n) = Sum_{i=1..2*n} A092921(n,i).
G.f.: -x*(12*x^2-9*x+2)/((4*x-1)*(2*x-1)^2). - Alois P. Heinz, Jul 11 2023
E.g.f.: exp(2*x)*(1 - 2*x - cosh(2*x) + 5*sinh(2*x))/4. - Stefano Spezia, Jul 12 2023
Showing 1-2 of 2 results.