A144409 Antidiagonal expansion of: f(t,n) = If[n == 1, 1/(1 - t), 1/(1 - t^floor(n/2) - t^n)].
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 3, 1, 1, 0, 1, 2, 5, 1, 1, 0, 1, 0, 3, 8, 1, 1, 0, 0, 0, 2, 4, 13, 1, 1, 0, 0, 1, 1, 0, 6, 21, 1, 1, 0, 0, 1, 0, 1, 3, 9, 34, 1, 1, 0, 0, 0, 0, 0, 1, 0, 13, 55, 1, 1, 0, 0, 0, 1, 0, 2, 2, 5, 19, 89, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 28, 144, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3
Offset: 1
Examples
{1}, {1, 1}, {1, 1, 1}, {1, 1, 2, 1}, {1, 0, 1, 3, 1}, {1, 0, 1, 2, 5, 1}, {1, 0, 1, 0, 3, 8, 1}, {1, 0, 0, 0, 2, 4, 13, 1}, {1, 0, 0, 1, 1, 0, 6, 21, 1}, {1, 0, 0, 1, 0, 1, 3, 9, 34, 1}, {1, 0, 0, 0, 0, 0, 1, 0, 13, 55, 1}, {1, 0, 0, 0, 1, 0, 2, 2, 5, 19, 89, 1}, {1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 28, 144, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 8, 41, 233, 1}, {1, 0, 0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 60, 377, 1}
Crossrefs
Cf. A099238.
Programs
-
Mathematica
f[t_, n_] = If[n == 1, 1/(1 - t), 1/(1 - t^Floor[n/2] - t^n)]; a = Table[Table[SeriesCoefficient[Series[f[t, m], {t, 0, 30}], n], {n, 0, 30}], {m, 1, 31}]; b = Table[Table[a[[n - m + 1]][[m]], {m, 1, n }], {n, 1, 15}] ; Flatten[b]
Formula
f(t,n) = If[n == 1, 1/(1 - t), 1/(1 - t^floor(n/2) - t^n)); t(n,m) = antidiagonal_expansion(f(t,n)).
Comments