A144443 Triangle read by rows: T(n, k) = (6*n-6*k+1)*T(n-1, k-1) + (6*k-5)*T(n-1, k) + 6*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
1, 1, 1, 1, 20, 1, 1, 159, 159, 1, 1, 1138, 4254, 1138, 1, 1, 7997, 77878, 77878, 7997, 1, 1, 56016, 1219167, 2984888, 1219167, 56016, 1, 1, 392155, 17633649, 87659315, 87659315, 17633649, 392155, 1, 1, 2745134, 244083268, 2219485106, 4400875078, 2219485106, 244083268, 2745134, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 20, 1; 1, 159, 159, 1; 1, 1138, 4254, 1138, 1; 1, 7997, 77878, 77878, 7997, 1; 1, 56016, 1219167, 2984888, 1219167, 56016, 1; 1, 392155, 17633649, 87659315, 87659315, 17633649, 392155, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]]; Table[T[n,k,6,6], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
-
Sage
def T(n,k,m,j): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) def A144443(n,k): return T(n,k,6,6) flatten([[A144443(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022
Formula
T(n, k) = (6*n-6*k+1)*T(n-1, k-1) + (6*k-5)*T(n-1, k) + 6*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Sum_{k=1..n} T(n, k) = s(n), where s(n) = 2*(3*n-5)*s(n-1) + 6*s(n-2), s(1) = 1, s(2) = 2.
From G. C. Greubel, Mar 04 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = (1/3)*(10*7^(n-2) - (3*n+1)).
T(n, 3) = (1/18)*(9*n^2 -3*n -11 - 20*(21*n-11)*7^(n-3) + 997*13^(n-3)). (End)