cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144446 Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 7, 2, 1, 30, 10, 2, 1, 157, 64, 13, 2, 1, 972, 532, 110, 16, 2, 1, 6961, 5448, 1249, 168, 19, 2, 1, 56660, 66440, 17816, 2416, 238, 22, 2, 1, 516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1, 5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2008

Keywords

Examples

			Array t(n,k) begins as:
    1,    1,     1,     1,     1,      1, ...;
    2,    2,     2,     2,     2,      2, ...;
    7,   10,    13,    16,    19,     22, ...;
   30,   64,   110,   168,   238,    320, ...;
  157,  532,  1249,  2416,  4141,   6532, ...;
  972, 5448, 17816, 44160, 92292, 171752, ...;
Antidiagonal triangle T(n,k) begins as:
        1;
        2,        1;
        7,        2,       1;
       30,       10,       2,      1;
      157,       64,      13,      2,     1;
      972,      532,     110,     16,     2,    1;
     6961,     5448,    1249,    168,    19,    2,   1;
    56660,    66440,   17816,   2416,   238,   22,   2,  1;
   516901,   941056,  306619,  44160,  4141,  320,  25,  2, 1;
  5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1;
		

Crossrefs

Programs

  • Magma
    function T(n,k) // triangle form; A144446
      if k gt n-2 then return n-k+1;
      else return (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k);
      end if; return T;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2022
    
  • Mathematica
    t[n_, k_]:= t[n, k]= If[n<3, n, (k*(n-1) +2-k)*t[n-1,k] + k*t[n-2,k]];
    T[n_, k_]:= t[n-k+1,k];
    Table[T[n, k], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2022 *)
  • Sage
    def t(n,k): return n if(n<3) else (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k)
    def A144446(n,k): return t(n-k+1,k)
    flatten([[A144446(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 05 2022

Formula

T(n, k) = t(n-k+1, k), where t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) with t(1, k) = 1, t(2, k) = 2.
T(n, 1) = A001053(n+1).
T(n, k) = (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k) with T(n, n-1) = 2, T(n, n) = 1 (as a triangle). - G. C. Greubel, Mar 05 2022

Extensions

Edited by G. C. Greubel, Mar 05 2022