A144446 Array t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k), with t(1, k) = 1, t(2, k) = 2, read by antidiagonals.
1, 2, 1, 7, 2, 1, 30, 10, 2, 1, 157, 64, 13, 2, 1, 972, 532, 110, 16, 2, 1, 6961, 5448, 1249, 168, 19, 2, 1, 56660, 66440, 17816, 2416, 238, 22, 2, 1, 516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1, 5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1
Offset: 1
Examples
Array t(n,k) begins as: 1, 1, 1, 1, 1, 1, ...; 2, 2, 2, 2, 2, 2, ...; 7, 10, 13, 16, 19, 22, ...; 30, 64, 110, 168, 238, 320, ...; 157, 532, 1249, 2416, 4141, 6532, ...; 972, 5448, 17816, 44160, 92292, 171752, ...; Antidiagonal triangle T(n,k) begins as: 1; 2, 1; 7, 2, 1; 30, 10, 2, 1; 157, 64, 13, 2, 1; 972, 532, 110, 16, 2, 1; 6961, 5448, 1249, 168, 19, 2, 1; 56660, 66440, 17816, 2416, 238, 22, 2, 1; 516901, 941056, 306619, 44160, 4141, 320, 25, 2, 1; 5225670, 15189776, 6185828, 981184, 92292, 6532, 414, 28, 2, 1;
Links
- G. C. Greubel, Antidiagonals n = 1..50, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // triangle form; A144446 if k gt n-2 then return n-k+1; else return (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k); end if; return T; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2022
-
Mathematica
t[n_, k_]:= t[n, k]= If[n<3, n, (k*(n-1) +2-k)*t[n-1,k] + k*t[n-2,k]]; T[n_, k_]:= t[n-k+1,k]; Table[T[n, k], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2022 *)
-
Sage
def t(n,k): return n if(n<3) else (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) def A144446(n,k): return t(n-k+1,k) flatten([[A144446(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 05 2022
Formula
T(n, k) = t(n-k+1, k), where t(n, k) = (k*(n-1) +2-k)*t(n-1, k) + k*t(n-2, k) with t(1, k) = 1, t(2, k) = 2.
T(n, 1) = A001053(n+1).
T(n, k) = (k*(n-k)+2-k)*T(n-1, k) + k*T(n-2, k) with T(n, n-1) = 2, T(n, n) = 1 (as a triangle). - G. C. Greubel, Mar 05 2022
Extensions
Edited by G. C. Greubel, Mar 05 2022