A144447 Triangle T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 49, 1, 1, 13, 64, 160, 211, 1, 1, 16, 103, 361, 781, 994, 1, 1, 19, 151, 679, 1981, 3967, 4963, 1, 1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1, 1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 4, 1; 1, 7, 13, 1; 1, 10, 34, 49, 1; 1, 13, 64, 160, 211, 1; 1, 16, 103, 361, 781, 994, 1; 1, 19, 151, 679, 1981, 3967, 4963, 1; 1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1; 1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1,k]+T[n,k-1]+T[n-1,k-1]+T[n-2,k-1]]; Table[T[n, k], {n,15}, {k,n}]//Flatten
-
Sage
def T(n,k): return 1 if (k==1 or k==n) else T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1) # A144447 flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 06 2022
Formula
T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1.
From G. C. Greubel, Mar 09 2022: (Start)
T(n, 2) = (3*n) - 5.
T(n, 3) = (1/2!)*((3*n)^2 - 13*(3*n) + 38).
T(n, 4) = (1/3!)*((3*n)^3 - 24*(3*n)^2 + 195*(3*n) - 606).
T(n, 5) = (1/4!)*((3*n)^4 - 38*(3*n)^3 + 579*(3*n)^2 - 4422*(3*n) + 13704). (End)
Extensions
Edited by G. C. Greubel, Mar 06 2022