cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144447 Triangle T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 13, 1, 1, 10, 34, 49, 1, 1, 13, 64, 160, 211, 1, 1, 16, 103, 361, 781, 994, 1, 1, 19, 151, 679, 1981, 3967, 4963, 1, 1, 22, 208, 1141, 4162, 10891, 20815, 25780, 1, 1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 05 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  4,   1;
  1,  7,  13,    1;
  1, 10,  34,   49,    1;
  1, 13,  64,  160,  211,     1;
  1, 16, 103,  361,  781,   994,     1;
  1, 19, 151,  679, 1981,  3967,  4963,      1;
  1, 22, 208, 1141, 4162, 10891, 20815,  25780,      1;
  1, 25, 274, 1774, 7756, 24790, 60463, 112021, 137803, 1;
		

Programs

  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1,k]+T[n,k-1]+T[n-1,k-1]+T[n-2,k-1]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten
  • Sage
    def T(n,k): return 1 if (k==1 or k==n) else T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1) # A144447
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 06 2022

Formula

T(n, k) = T(n-1, k) + T(n, k-1) + T(n-1, k-1) + T(n-2, k-1), with T(n, 1) = T(n, n) = 1.
From G. C. Greubel, Mar 09 2022: (Start)
T(n, 2) = (3*n) - 5.
T(n, 3) = (1/2!)*((3*n)^2 - 13*(3*n) + 38).
T(n, 4) = (1/3!)*((3*n)^3 - 24*(3*n)^2 + 195*(3*n) - 606).
T(n, 5) = (1/4!)*((3*n)^4 - 38*(3*n)^3 + 579*(3*n)^2 - 4422*(3*n) + 13704). (End)

Extensions

Edited by G. C. Greubel, Mar 06 2022