A174301 A symmetrical triangle: T(n,k) = binomial(n, k)*if(floor(n/2) greater than or equal to k then 4^k, otherwise 4^(n-k)).
1, 1, 1, 1, 8, 1, 1, 12, 12, 1, 1, 16, 96, 16, 1, 1, 20, 160, 160, 20, 1, 1, 24, 240, 1280, 240, 24, 1, 1, 28, 336, 2240, 2240, 336, 28, 1, 1, 32, 448, 3584, 17920, 3584, 448, 32, 1, 1, 36, 576, 5376, 32256, 32256, 5376, 576, 36, 1, 1, 40, 720, 7680, 53760, 258048, 53760, 7680, 720, 40, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 8, 1; 1, 12, 12, 1; 1, 16, 96, 16, 1; 1, 20, 160, 160, 20, 1; 1, 24, 240, 1280, 240, 24, 1; 1, 28, 336, 2240, 2240, 336, 28, 1; 1, 32, 448, 3584, 17920, 3584, 448, 32, 1; 1, 36, 576, 5376, 32256, 32256, 5376, 576, 36, 1; 1, 40, 720, 7680, 53760, 258048, 53760, 7680, 720, 40, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[Floor(n/2) ge k select 4^k*Binomial(n,k) else 4^(n-k)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 15 2019
-
Mathematica
Table[Binomial[n, m]*If[Floor[n/2]>=m , 4^m, 4^(n-m)], {n,0,10}, {m,0,n} ]//Flatten
-
PARI
{T(n,k) = binomial(n,k)*if(floor(n/2)>=k, 4^k, 4^(n-k))}; \\ G. C. Greubel, Apr 15 2019
-
Sage
def T(n,k): if floor(n/2)>=k: return 4^k*binomial(n,k) else: return 4^(n-k)*binomial(n,k) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 15 2019
Formula
T(n, m) = binomial(n, m)*if(floor(n/2) greater than or equal to m then 4^m, otherwise 4^(n-m)).
Extensions
Edited by G. C. Greubel, Apr 15 2019
Comments