cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144528 Triangle read by rows: T(n,k) is the number of trees on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 0, 1, 4, 5, 6, 0, 0, 1, 6, 9, 10, 11, 0, 0, 1, 11, 18, 21, 22, 23, 0, 0, 1, 18, 35, 42, 45, 46, 47, 0, 0, 1, 37, 75, 94, 101, 104, 105, 106, 0, 0, 1, 66, 159, 204, 223, 230, 233, 234, 235, 0, 0, 1, 135, 355, 473, 520, 539, 546, 549, 550, 551
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			Triangle begins:
  1
  0 1
  0 0 1
  0 0 1  2
  0 0 1  2  3
  0 0 1  4  5  6
  0 0 1  6  9 10  11
  0 0 1 11 18 21  22  23
  0 0 1 18 35 42  45  46  47
  0 0 1 37 75 94 101 104 105 106
  ...
From _Andrew Howroyd_, Dec 17 2020: (Start)
Formatted as an array to show the full columns:
================================================
n\k  | 0 1 2   3   4   5   6   7   8   9  10
-----+------------------------------------------
   1 | 1 1 1   1   1   1   1   1   1   1   1 ...
   2 | 0 1 1   1   1   1   1   1   1   1   1 ...
   3 | 0 0 1   1   1   1   1   1   1   1   1 ...
   4 | 0 0 1   2   2   2   2   2   2   2   2 ...
   5 | 0 0 1   2   3   3   3   3   3   3   3 ...
   6 | 0 0 1   4   5   6   6   6   6   6   6 ...
   7 | 0 0 1   6   9  10  11  11  11  11  11 ...
   8 | 0 0 1  11  18  21  22  23  23  23  23 ...
   9 | 0 0 1  18  35  42  45  46  47  47  47 ...
  10 | 0 0 1  37  75  94 101 104 105 106 106 ...
  11 | 0 0 1  66 159 204 223 230 233 234 235 ...
  12 | 0 0 1 135 355 473 520 539 546 549 550 ...
  ...
(End)
		

Crossrefs

Columns k=2..7 are A000012, A000672, A000602, A036650, A036653, A359392.
The last three diagonals give A144527, A144520, A000055.

Programs

  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,
      k, k] + j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; a = {}; nmax = 20;
    For[ni=2, ni < nmax-1, ni++, (* columns 3 to max-1 *)
      gf[x_] = 1 + Sum[b[j-1, j-1, ni, ni] x^j, {j, 1, nmax}];
      ci[x_] = SymmetricGroupIndex[ni+1, x] /. x[i_] -> gf[x^i];
      a = Append[a, CoefficientList[Normal[Series[
        gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x, 0, nmax}]], x]];]
    Join[{1, 0, 1, 0, 0, 1}, Table[Join[{0, 0, 1}, Table[a[[k-3]][[n+1]],
    {k, 4, n}]], {n, 4, nmax}]] // Flatten (* Robert A. Russell, Feb 05 2023 *)
  • PARI
    \\ here V(n,k) gives column k as a vector.
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={Mat(vector(m, k, V(n,k-1)[2..1+n]~))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Extensions

a(53) corrected and terms a(56) and beyond from Andrew Howroyd, Dec 17 2020