cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144643 Triangle read by rows: T(n,k) = number of partitions of [1..k] into n nonempty clumps of sizes 1, 2, 3 or 4 (n >= 0, 0 <= k <= 4n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 0, 1, 3, 7, 15, 25, 35, 35, 0, 0, 0, 1, 6, 25, 90, 280, 770, 1855, 3675, 5775, 5775, 0, 0, 0, 0, 1, 10, 65, 350, 1645, 6930, 26425, 90475, 275275, 725725, 1576575, 2627625, 2627625, 0, 0, 0, 0, 0, 1, 15, 140, 1050, 6825, 39795, 211750, 1033725, 4629625
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jan 25 2009

Keywords

Examples

			Irregular triangle begins:
  1;
  0, 1, 1, 1, 1;
  0, 0, 1, 3, 7, 15, 25,  35,  35;
  0, 0, 0, 1, 6, 25, 90, 280, 770, 1855, 3675, 5775, 5775;
  ...
		

Crossrefs

Row sums give A144508.
See A144644 and A144645 for other versions.

Programs

  • Magma
    function t(n,k)
      if k eq n then return 1;
      elif k le n-1 or n le 0 then return 0;
      else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]);
      end if;
    end function;
    A144643:= func< n,k | t(n,k) >;
    [A144643(n,k): k in [0..4*n], n in [0..8]]; // G. C. Greubel, Oct 11 2023
    
  • Maple
    T := proc(n, k) option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else T(n - 1, k - 1) + (k - 1)*T(n - 1, k - 2) + 1/2*(k - 1)*(k - 2)*T(n - 1, k - 3) + 1/6*(k - 1)*(k - 2)*(k - 3)*T(n - 1, k - 4);
    end if;
    end proc;
  • Mathematica
    T[n_, k_]:= T[n, k]= Which[n==k, 1, kJean-François Alcover, Mar 20 2014, after Maple *)
    Table[BellY[k, n, {1,1,1,1}], {n,0,12}, {k,0,4*n}]//Flatten (* G. C. Greubel, Oct 11 2023 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k==n): return 1
        elif (kA144643(n,k): return t(n,k)
    flatten([[A144643(n,k) for k in range(4*n+1)] for n in range(13)]) # G. C. Greubel, Oct 11 2023

Formula

T(n, k) = Sum_{j=0..3} binomial(k-1, j) * T(n-1, k-j-1), with T(n, n) = 1, T(n, k) = 0 if n < 1 or n > k.
Sum_{k=0..4*n} T(n, k) = A144508(n).