A144644 Triangle in A144643 read by columns downwards.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 0, 15, 25, 10, 1, 0, 0, 25, 90, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1, 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 7, 6, 1; 0, 0, 15, 25, 10, 1; 0, 0, 25, 90, 65, 15, 1; 0, 0, 35, 280, 350, 140, 21, 1; 0, 0, 35, 770, 1645, 1050, 266, 28, 1; 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1; 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1; 0, 0, 0, 5775, 90475, 211750, 172095, 63525, 11880, 1155, 55, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
Programs
-
Magma
function t(n,k) if k eq n then return 1; elif k le n-1 or n le 0 then return 0; else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]); end if; end function; A144644:= func< n,k | t(k,n) >; [A144644(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
-
Mathematica
With[{r=15}, Table[BellY[n, k, {1,1,1,1}], {n,0,r}, {k,0,n}]]//Flatten (* Jan Mangaldan, May 22 2016 *)
-
PARI
\\ Function bell_matrix is defined in A264428. B = bell_matrix( n -> {if(n < 4, 1, 0)}, 9); for(n = 0, 9, printp(); for(k = 1, n, print1(B[n,k], " "))); \\ Peter Luschny, Apr 17 2019
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: 1 if n<4 else 0, 12) # Peter Luschny, Jan 19 2016
Formula
Bivariate e.g.f. A144644(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G4(x)), where G4(x) = Sum_{i=1..4} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
From G. C. Greubel, Oct 11 2023: (Start)
T(n, k) = A144643(k, n).
T(n, k) = A144645(n, n-k).
T(n, k) = t(k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k.
Sum_{k=0..n} T(n, k) = A001681(n). (End)
Comments