cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144644 Triangle in A144643 read by columns downwards.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 0, 15, 25, 10, 1, 0, 0, 25, 90, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 0, 1855, 6930, 6825, 2646, 462, 36, 1, 0, 0, 0, 3675, 26425, 39795, 22575, 5880, 750, 45, 1
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jan 25 2009

Keywords

Comments

The Bell transform of the sequence "g(n) = 1 if n<4 else 0". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,    1;
  0, 1,  7,    6,     1;
  0, 0, 15,   25,    10,      1;
  0, 0, 25,   90,    65,     15,      1;
  0, 0, 35,  280,   350,    140,     21,     1;
  0, 0, 35,  770,  1645,   1050,    266,    28,     1;
  0, 0,  0, 1855,  6930,   6825,   2646,   462,    36,    1;
  0, 0,  0, 3675, 26425,  39795,  22575,  5880,   750,   45,  1;
  0, 0,  0, 5775, 90475, 211750, 172095, 63525, 11880, 1155, 55, 1;
		

Crossrefs

Programs

  • Magma
    function t(n,k)
      if k eq n then return 1;
      elif k le n-1 or n le 0 then return 0;
      else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]);
      end if;
    end function;
    A144644:= func< n,k | t(k,n) >;
    [A144644(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
  • Mathematica
    With[{r=15}, Table[BellY[n, k, {1,1,1,1}], {n,0,r}, {k,0,n}]]//Flatten (* Jan Mangaldan, May 22 2016 *)
  • PARI
    \\ Function bell_matrix is defined in A264428.
    B = bell_matrix( n -> {if(n < 4, 1, 0)}, 9); for(n = 0, 9, printp(); for(k = 1, n, print1(B[n,k], " "))); \\ Peter Luschny, Apr 17 2019
    
  • Sage
    # uses[bell_matrix from A264428]
    bell_matrix(lambda n: 1 if n<4 else 0, 12) # Peter Luschny, Jan 19 2016
    

Formula

Bivariate e.g.f. A144644(x,t) = Sum_{n>=0, k>=0} T(n,k)*x^n*t^k/n! = exp(t*G4(x)), where G4(x) = Sum_{i=1..4} x^i/i! is the e.g.f. of column 1. - R. J. Mathar, May 28 2019
From G. C. Greubel, Oct 11 2023: (Start)
T(n, k) = A144643(k, n).
T(n, k) = A144645(n, n-k).
T(n, k) = t(k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k.
Sum_{k=0..n} T(n, k) = A001681(n). (End)