cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144645 Triangle in A144643 read upwards by columns.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 0, 0, 1, 15, 65, 90, 25, 0, 0, 1, 21, 140, 350, 280, 35, 0, 0, 1, 28, 266, 1050, 1645, 770, 35, 0, 0, 1, 36, 462, 2646, 6825, 6930, 1855, 0, 0, 0, 1, 45, 750, 5880, 22575, 39795, 26425, 3675, 0, 0, 0
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Jan 25 2009

Keywords

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,   0;
  1,  3,   1,    0;
  1,  6,   7,    1,     0;
  1, 10,  25,   15,     0,     0;
  1, 15,  65,   90,    25,     0,     0;
  1, 21, 140,  350,   280,    35,     0,    0;
  1, 28, 266, 1050,  1645,   770,    35,    0,   0;
  1, 36, 462, 2646,  6825,  6930,  1855,    0,   0,   0;
  1, 45, 750, 5880, 22575, 39795, 26425, 3675,   0,   0,   0;
		

Crossrefs

Cf. A001681 (row sums), A144643, A144644.

Programs

  • Magma
    function t(n,k)
      if k eq n then return 1;
      elif k le n-1 or n le 0 then return 0;
      else return (&+[Binomial(k-1,j)*t(n-1,k-j-1): j in [0..3]]);
      end if;
    end function;
    A144645:= func< n,k | t(n-k,n) >;
    [A144645(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 11 2023
    
  • Mathematica
    Table[BellY[n, n-k, {1,1,1,1}], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 11 2023; based on A144644 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k==n): return 1
        elif (kA144645(n,k): return t(n-k,n)
    flatten([[A144645(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 11 2023

Formula

From G. C. Greubel, Oct 11 2023: (Start)
T(n, k) = A144643(n-k, n).
T(n, k) = A144644(n, n-k).
T(n, k) = t(n-k, n), where t(n, k) = Sum_{j=0..3} binomial(k-1, j) * t(n-1, k-j-1), with t(n,n) = 1, t(n,k) = 0 if n < 1 or n > k.
Sum_{k=0..n} T(n, k) = A001681(n). (End)