A144660
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} (i+j+k)!/(i!*j!*k!).
Original entry on oeis.org
1, 16, 271, 5248, 110251, 2435200, 55621567, 1301226496, 30992872483, 748574130016, 18283414868863, 450657134765056, 11192820128307871, 279787295456009728, 7032532242167190271, 177611430242835570688, 4504491083159761986451, 114662734697313744041248
Offset: 0
-
f:=n->add( add( add( (i+j+k)!/(i!*j!*k!), i=0..n),j=0..n),k=0..n); [seq(f(n),n=0..20)];
-
Table[Sum[(i + j + k)!/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
Table[Sum[(1 + k + 2*n)! * HypergeometricPFQ[{1, -1 - k - n, -n}, {-1 - k - 2*n, -k - n}, 1] / ((1 + k + n)*k!*n!^2), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
{a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, (i+j+k)!/(i!*j!*k!))))} \\ Seiichi Manyama, Apr 02 2019
A308292
A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0
For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
1, 3, 19, 271, 7365, 326011, ...
1, 4, 69, 5248, 1107697, 492911196, ...
1, 5, 251, 110251, 191448941, 904434761801, ...
1, 6, 923, 2435200, 35899051101, 1856296498826906, ...
1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
A307324
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} Sum_{l=0..n} (-1)^(i+j+k+l) * (i+j+k+l)!/(i!*j!*k!*l!).
Original entry on oeis.org
1, 9, 997, 148041, 25413205, 4744544613, 935728207597, 191813392024137, 40462946725744501, 8726529512888314245, 1915408781755211655133, 426478330303800465141669, 96092667172064808771832957, 21869171662479233922632691261
Offset: 0
-
Table[Sum[(-1)^(i + j + k + l) * (i + j + k + l)! / (i!*j!*k!*l!), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
Table[Sum[((-1)^(j + k + l) * 2^(-1 - j - k - l) * ((j + k + l)! * (1 + n)! + (-1)^n * 2^(1 + j + k + l) * (1 + j + k + l + n)! Hypergeometric2F1[1, 2 + j + k + l + n, 2 + n, -1]))/(j! k! l! (1 + n)!), {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
-
{a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, sum(l=0, n, (-1)^(i+j+k+l)*(i+j+k+l)!/(i!*j!*k!*l!)))))}
-
{a(n) = sum(i=0, 4*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^4, i))} \\ Seiichi Manyama, May 20 2019
A144662
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (i+j+k+l)!/(4!*i!*j!*k!*l!).
Original entry on oeis.org
0, 1, 266, 45296, 7958726, 1495388159, 295887993624, 60790021361170, 12845435390707724, 2774049143394729653, 609542744597785306189, 135840016223787254538508, 30629983532857972983331740, 6975352854342057056747327899, 1602003695575764851150428242804, 370631496919828403109950449644134
Offset: 0
-
f:=n->add( add( add( add( (i+j+k+l)!/(4!*i!*j!*k!*l!), i=1..n),j=1..n),k=1..n),l=1..n); [seq(f(n),n=0..16)];
-
a[n_] := Sum[(i+j+k+l)!/(4! i! j! k! l!), {i, n}, {j, n}, {k, n}, {l, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 05 2018 *)
Table[(Binomial[2*n + 2, n + 1] - 2*(1 + n) + Sum[(1 + k + l + 2*n)! HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1]/((1 + k + l + n) k! l! (n!)^2) - (2*(1 + k + l + n)!)/((1 + k + l) k! l! n!), {k, 1, n}, {l, 1, n}])/24, {n, 0, 15}] (* Vaclav Kotesovec, Apr 04 2019 *)
Showing 1-4 of 4 results.
Comments