cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144512 Array read by upwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., k+1, for 0 <= k <= (k+1)*n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 31, 37, 1, 1, 5, 121, 842, 266, 1, 1, 6, 456, 18252, 45296, 2431, 1, 1, 7, 1709, 405408, 7958726, 4061871, 27007, 1, 1, 8, 6427, 9268549, 1495388159, 7528988476, 546809243, 353522, 1, 1, 9, 24301, 216864652, 295887993624, 15467641899285
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2008, Dec 21 2008

Keywords

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, ...
1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, ...
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ...
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
		

Crossrefs

See A144510 for Maple code.
Columns include A048775, A144511, A144662, A147984.
Transpose of array in A144510.
Main diagonal gives A281901.

Programs

  • Maple
    b := proc(n, i, k) local r;
    option remember;
    if n = i then 1;
    elif i < n then 0;
    elif n < 1 then 0;
    else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k);
    end if;
    end proc;
    T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)

A144661 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} Sum_{l=0..n} (i+j+k+l)!/(i!*j!*k!*l!).

Original entry on oeis.org

1, 65, 7365, 1107697, 191448941, 35899051101, 7101534312685, 1458965717496881, 308290573348183629, 66577182435768923245, 14629025943480502591445, 3260160391173522631759533, 735119604833362632050789701, 167408468505328518543519208949, 38448088693846486556578015883325
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2009

Keywords

Crossrefs

Programs

  • Maple
    f:=n->add( add( add( add( (i+j+k+l)!/(i!*j!*k!*l!), i=0..n),j=0..n),k=0..n),l=0..n); [seq(f(n),n=0..20)];
  • Mathematica
    Table[Sum[(i + j + k + l)! / (i!*j!*k!*l!), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
    Table[Sum[(1 + j + k + l + n)!/((1 + j + k + l)*j!*k!*l!), {j, 0, n}, {k, 0, n}, {l, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
    Table[Sum[(1 + k + l + 2*n)! * HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1] / ((1 + k + l + n)*k!*l!*n!), {k, 0, n}, {l, 0, n}]/n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, sum(l=0, n, (i+j+k+l)!/(i!*j!*k!*l!)))))} \\ Seiichi Manyama, Apr 02 2019

Formula

a(n) ~ 2^(8*n + 15/2) / (81 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 02 2019

A307351 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (-1)^(i+j+k+l) * (i+j+k+l)!/(4!*i!*j!*k!).

Original entry on oeis.org

0, 1, 36, 6286, 1056496, 197741887, 38987482590, 7992252465604, 1685955453442326, 363605412277403725, 79808698852014867735, 17769930438868419048744, 4003861131932651139989514, 911215485942545343663605503, 209160405405110598032066208338
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[(-1)^(i + j + k + l)*(i + j + k + l)!/(4!*i!*j!*k!*l!), {i, 1, n}], {j, 1, n}], {k, 1, n}], {l, 1, n}], {n, 0, 14}] (* Amiram Eldar, Apr 03 2019 *)
  • PARI
    {a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, sum(l=1, n, (-1)^(i+j+k+l)*(i+j+k+l)!/(24*i!*j!*k!*l!)))))}
    
  • PARI
    {a(n) = sum(i=4, 4*n, (-1)^i*i!*polcoef(sum(j=1, n, x^j/j!)^4, i))/24} \\ Seiichi Manyama, May 20 2019

Formula

a(n) ~ 2^(8*n + 9/2) / (1875 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 04 2019

A147984 Column 5 of A144512.

Original entry on oeis.org

1, 2431, 4061871, 7528988476, 15467641899285, 34155922905682979, 79397199549271412737, 191739533381111401455478, 476872353039366288373555323
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Crossrefs

Showing 1-4 of 4 results.