cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A030662 Number of combinations of n things from 1 to n at a time, with repeats allowed.

Original entry on oeis.org

1, 5, 19, 69, 251, 923, 3431, 12869, 48619, 184755, 705431, 2704155, 10400599, 40116599, 155117519, 601080389, 2333606219, 9075135299, 35345263799, 137846528819, 538257874439, 2104098963719, 8233430727599, 32247603683099, 126410606437751, 495918532948103
Offset: 1

Views

Author

Donald Mintz (djmintz(AT)home.com)

Keywords

Comments

Add terms of an increasingly bigger diamond-shaped part of Pascal's triangle:
.......................... 1
............ 1 .......... 1 1
.. 1 ...... 1 1 ........ 1 2 1
. 1 1 =5 . 1 2 1 =19 .. 1 3 3 1 =69
.. 2 ...... 3 3 ........ 4 6 4
............ 6 ......... 10 10
.......................... 20
- Ralf Stephan, May 17 2004
The prime p divides a((p-1)/2) for p in A002144 (Pythagorean primes). - Alexander Adamchuk, Jul 04 2006
Also, number of square submatrices of a square matrix. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
Partial sums of A051924. - J. M. Bergot, Jun 22 2013
Number of partitions with Ferrers diagrams that fit in an n X n box (excluding the empty partition of 0). - Michael Somos, Jun 02 2014
Also number of non-descending sequences with length and last number are less or equal to n, and also the number of integer partitions (of any positive integer) with length and largest part are less or equal to n. - Zlatko Damijanic, Dec 06 2024

Examples

			G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
		

Crossrefs

Column k=2 of A047909.
Central column of triangle A014473.
Right-hand column 2 of triangle A102541.

Programs

  • Magma
    [(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
  • Maple
    seq(sum((binomial(n,m))^2,m=1..n),n=1..23); # Zerinvary Lajos, Jun 19 2008
    f:=n->add( add( binomial(i+j,i), i=0..n),j=0..n); [seq(f(n),n=0..12)]; # N. J. A. Sloane, Jan 31 2009
  • Mathematica
    Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!,{i,1,n}],{j,1,n}],{n,1,20}] (* Alexander Adamchuk, Jul 04 2006 *)
    a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
  • PARI
    a(n)=binomial(2*n,n)-1 \\ Charles R Greathouse IV, Jun 26 2013
    
  • Python
    from math import comb
    def a(n): return comb(2*n, n) - 1
    print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
    
  • Sage
    def a(n) : return binomial(2*n,n) - 1
    [a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
    

Formula

a(n) = A000984(n) - 1.
a(n) = 2*A001700(n-1) - 1.
a(n) = 2*(2*n-1)!/(n!*(n-1)!)-1.
a(n) = Sum_{k=1..n} binomial(n, k)^2. - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{j=0..n} Sum_{i=j..n+j} binomial(i, j). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jul 23 2003
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-1} binomial(i+j, i). - N. J. A. Sloane, Jan 31 2009
Also for n>1: a(n)=(2*n)!/(n!)^2-1. - Hugo Pfoertner, Feb 10 2004
a(n) = Sum_{j=1..n} Sum_{i=1..n} (2n-i-j)!/((n-i)!*(n-j)!). - Alexander Adamchuk, Jul 04 2006
a(n) = A115112(n) + 1. - Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008
G.f.: Q(0)*(1-4*x)/x - 1/x/(1-x), where Q(k)= 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
D-finite with recurrence: n*a(n) +2*(-3*n+2)*a(n-1) +(9*n-14)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 25 2013
0 = a(n)*(+16*a(n+1) - 70*a(n+2) + 68*a(n+3) - 14*a(n+4)) + a(n+1)*(-2*a(n+1) + 61*a(n+2) - 96*a(n+3) + 23*a(n+4)) + a(n+2)*(-6*a(n+2) + 31*a(n+3) - 10*a(n+4)) + a(n+3)*(-2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jun 02 2014
From Ilya Gutkovskiy, Jan 25 2017: (Start)
O.g.f.: (1 - x - sqrt(1 - 4*x))/((1 - x)*sqrt(1 - 4*x)).
E.g.f.: exp(x)*(exp(x)*BesselI(0,2*x) - 1). (End)
a(n) = 3*n*Sum_{k=1..n} (-1)^(k+1)/(2*n+k)*binomial(2*n+k,n-k). - Vladimir Kruchinin, Jul 29 2025
a(n) = n * binomial(2*n, n) * Sum_{k = 1..n} 1/(k*binomial(n+k, k)). - Peter Bala, Aug 05 2025

A144511 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i+j+k)!/(3!*i!*j!*k!).

Original entry on oeis.org

0, 1, 37, 842, 18252, 405408, 9268549, 216864652, 5165454442, 124762262630, 3047235458767, 75109521108771, 1865470016184352, 46631215889276662, 1172088706950306293, 29601905040172054928, 750748513858793527974, 19110455782881086439234, 488057675380082251617235
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 15 2008, Jan 30 2009

Keywords

Crossrefs

Column 3 of array in A144510.
Cf. A144658, A144660 (a very similar sum).

Programs

  • Maple
    f:=n->add( add( add( (i+j+k)!/(3!*i!*j!*k!), i=1..n),j=1..n),k=1..n); [seq(f(n),n=0..20)];
  • Mathematica
    Table[Sum[Sum[Sum[(i+j+k)!/i!/j!/k!/6,{i,1,n}],{j,1,n}],{k,1,n}],{n,1,30}]
    Table[(5 + 3*n - 3*Binomial[2*n+2, n+1] + Sum[(1 + k + 2*n)! * HypergeometricPFQ[{1, -1 - k - n, -n}, {-1 - k - 2*n, -k - n}, 1] / ((1 + k + n)*k!*n!^2), {k, 0, n}]) / 6, {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i+j+k)!/(6*i!*j!*k!))))} \\ Seiichi Manyama, Apr 03 2019
    
  • PARI
    {a(n) = sum(i=3, 3*n, i!*polcoef(sum(j=1, n, x^j/j!)^3, i))/6} \\ Seiichi Manyama, May 19 2019

Formula

a(n) = (5 + 3*n - 3*binomial(2*n+2, n+1) + A144660(n))/6. - Vaclav Kotesovec, Apr 04 2019

A307318 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} (-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!).

Original entry on oeis.org

1, -2, 37, -692, 14371, -315002, 7156969, -166785320, 3960790687, -95442311582, 2326713829837, -57260397539204, 1420295354815351, -35463581316556850, 890530353765972817, -22472131364683145552, 569507678494598796631, -14487492070374441746150
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(i + j + k) * (i + j + k)!/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, (-1)^(i+j+k)*(i+j+k)!/(i!*j!*k!))))}
    
  • PARI
    {a(n) = sum(i=0, 3*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^3, i))} \\ Seiichi Manyama, May 20 2019

Formula

From Vaclav Kotesovec, Apr 02 2019: (Start)
Recurrence: 6*(n-1)*n^2*(490*n^4 - 3948*n^3 + 11668*n^2 - 14967*n + 7027)*a(n) = - (n-1)*(74480*n^6 - 675066*n^5 + 2399756*n^4 - 4233492*n^3 + 3852029*n^2 - 1682577*n + 272160)*a(n-1) + (131320*n^7 - 1437814*n^6 + 6472114*n^5 - 15414556*n^4 + 20770423*n^3 - 15610855*n^2 + 5939868*n - 861840)*a(n-2) - (27440*n^7 - 355838*n^6 + 1853810*n^5 - 4998800*n^4 + 7460459*n^3 - 6071312*n^2 + 2439561*n - 362880)*a(n-3) - 3*(2*n - 5)*(3*n - 8)*(3*n - 7)*(490*n^4 - 1988*n^3 + 2764*n^2 - 1515*n + 270)*a(n-4).
a(n) ~ (-1)^n * 3^(3*n + 7/2) / (128*Pi*n). (End)

A308292 A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0

Views

Author

Seiichi Manyama, May 19 2019

Keywords

Comments

For r > 1, row r is asymptotic to sqrt(2*Pi) * (r*n)^(r*n + 1/2) / ((r!)^n * exp(r*n-1)). - Vaclav Kotesovec, May 24 2020

Examples

			For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
   1, 1,    1,        1,             1,                   1, ...
   1, 2,    5,       16,            65,                 326, ...
   1, 3,   19,      271,          7365,              326011, ...
   1, 4,   69,     5248,       1107697,           492911196, ...
   1, 5,  251,   110251,     191448941,        904434761801, ...
   1, 6,  923,  2435200,   35899051101,    1856296498826906, ...
   1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
		

Crossrefs

Columns k=0..4 give A000012, A000027(n+1), A030662(n+1), A144660, A144661.
Rows n=0..4 give A000012, A000522, A003011, A308294, A308295.
Main diagonal gives A274762.
Cf. A144510.

Formula

A(n,k) = Sum_{i=0..k*n} b(i) where Sum_{i=0..k*n} b(i) * x^i/i! = (Sum_{i=0..n} x^i/i!)^k.

A144661 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} Sum_{l=0..n} (i+j+k+l)!/(i!*j!*k!*l!).

Original entry on oeis.org

1, 65, 7365, 1107697, 191448941, 35899051101, 7101534312685, 1458965717496881, 308290573348183629, 66577182435768923245, 14629025943480502591445, 3260160391173522631759533, 735119604833362632050789701, 167408468505328518543519208949, 38448088693846486556578015883325
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2009

Keywords

Crossrefs

Programs

  • Maple
    f:=n->add( add( add( add( (i+j+k+l)!/(i!*j!*k!*l!), i=0..n),j=0..n),k=0..n),l=0..n); [seq(f(n),n=0..20)];
  • Mathematica
    Table[Sum[(i + j + k + l)! / (i!*j!*k!*l!), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
    Table[Sum[(1 + j + k + l + n)!/((1 + j + k + l)*j!*k!*l!), {j, 0, n}, {k, 0, n}, {l, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
    Table[Sum[(1 + k + l + 2*n)! * HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1] / ((1 + k + l + n)*k!*l!*n!), {k, 0, n}, {l, 0, n}]/n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, sum(l=0, n, (i+j+k+l)!/(i!*j!*k!*l!)))))} \\ Seiichi Manyama, Apr 02 2019

Formula

a(n) ~ 2^(8*n + 15/2) / (81 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 02 2019

A144662 a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (i+j+k+l)!/(4!*i!*j!*k!*l!).

Original entry on oeis.org

0, 1, 266, 45296, 7958726, 1495388159, 295887993624, 60790021361170, 12845435390707724, 2774049143394729653, 609542744597785306189, 135840016223787254538508, 30629983532857972983331740, 6975352854342057056747327899, 1602003695575764851150428242804, 370631496919828403109950449644134
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2009

Keywords

Crossrefs

Column 4 of A144512. Cf. A144660, A144661.

Programs

  • Maple
    f:=n->add( add( add( add( (i+j+k+l)!/(4!*i!*j!*k!*l!), i=1..n),j=1..n),k=1..n),l=1..n); [seq(f(n),n=0..16)];
  • Mathematica
    a[n_] := Sum[(i+j+k+l)!/(4! i! j! k! l!), {i, n}, {j, n}, {k, n}, {l, n}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 05 2018 *)
    Table[(Binomial[2*n + 2, n + 1] - 2*(1 + n) + Sum[(1 + k + l + 2*n)! HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1]/((1 + k + l + n) k! l! (n!)^2) - (2*(1 + k + l + n)!)/((1 + k + l) k! l! n!), {k, 1, n}, {l, 1, n}])/24, {n, 0, 15}] (* Vaclav Kotesovec, Apr 04 2019 *)

A307352 a(n) = Sum_{0<=i<=j<=k<=n} (i+j+k)!/(i!*j!*k!).

Original entry on oeis.org

1, 10, 152, 2857, 59258, 1299434, 29540536, 688792297, 16365424655, 394524030964, 9621387028097, 236859068544553, 5876752849424588, 146774130990116924, 3686474939260449666, 93044751867820344115, 2358431594464812420404, 60004708149086107604240
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(i+j+k)!/(i!*j!*k!), {i, 0, j}], {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=i, n, sum(k=j, n, (i+j+k)!/(i!*j!*k!))))}

Formula

From Vaclav Kotesovec, Apr 04 2019: (Start)
Recurrence: 3*(n-1)*n^2*(2*n + 1)*(15680*n^7 - 198268*n^6 + 1049184*n^5 - 3003295*n^4 + 5004388*n^3 - 4830736*n^2 + 2483598*n - 518661)*a(n)=(n-1)*(2*n - 1)*(1238720*n^9 - 15631812*n^8 + 82366948*n^7 - 233558317*n^6 + 380532743*n^5 - 345530522*n^4 + 141797620*n^3 + 8081106*n^2 - 23913486*n + 4762800)*a(n-1) + 2*(909440*n^11 - 14525784*n^10 + 100260068*n^9 - 390684898*n^8 + 940603537*n^7 - 1433395699*n^6 + 1346188538*n^5 - 691297162*n^4 + 97138838*n^3 + 77570673*n^2 - 37619991*n + 4762800)*a(n-2) - 2*(1662080*n^11 - 24324888*n^10 + 154076996*n^9 - 552269110*n^8 + 1226963821*n^7 - 1732162636*n^6 + 1512829217*n^5 - 721942210*n^4 + 86052929*n^3 + 81957789*n^2 - 37651608*n + 4762800)*a(n-3) - (2*n - 3)*(862400*n^10 - 12613860*n^9 + 77917844*n^8 - 263521873*n^7 + 527376397*n^6 - 624837256*n^5 + 401742338*n^4 - 90648379*n^3 - 35886325*n^2 + 22963194*n - 3175200)*a(n-4) + 3*(n-3)*(2*n - 5)*(3*n - 8)*(3*n - 7)*(15680*n^7 - 88508*n^6 + 188856*n^5 - 182595*n^4 + 66488*n^3 + 9758*n^2 - 11818*n + 1890)*a(n-5).
a(n) ~ 3^(3*n + 13/2) / (832*Pi*n).
(End)

A307353 a(n) = Sum_{1<=i<=j<=k<=n} (i+j+k)!/(i!*j!*k!).

Original entry on oeis.org

0, 6, 138, 2808, 59083, 1298797, 29538183, 688783509, 16365391557, 394523905488, 9621386549905, 236859066714283, 5876752842394018, 146774130963028054, 3686474939155802036, 93044751867415156290, 2358431594463240429469
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(i+j+k)!/(i!*j!*k!), {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, (i+j+k)!/(i!*j!*k!))))}

Formula

a(n) ~ 3^(3*n + 13/2) / (832*Pi*n). - Vaclav Kotesovec, Apr 04 2019

A307358 a(n) = Sum_{0<=i<=j<=k<=n} (-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!).

Original entry on oeis.org

1, -4, 72, -1345, 27886, -610558, 13861334, -322838475, 7663363513, -184598740512, 4498935186891, -110693299767349, 2745124008220296, -68532209858173364, 1720678086867077832, -43415209670536390089, 1100146390869600888470
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[(-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!), {i, 0, j}], {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
  • PARI
    {a(n) = sum(i=0, n, sum(j=i, n, sum(k=j, n, (-1)^(i+j+k)*(i+j+k)!/(i!*j!*k!))))}

Formula

a(n) ~ (-1)^n * 3^(3*n + 13/2) / (1792*Pi*n). - Vaclav Kotesovec, Apr 04 2019
Showing 1-9 of 9 results.