A030662
Number of combinations of n things from 1 to n at a time, with repeats allowed.
Original entry on oeis.org
1, 5, 19, 69, 251, 923, 3431, 12869, 48619, 184755, 705431, 2704155, 10400599, 40116599, 155117519, 601080389, 2333606219, 9075135299, 35345263799, 137846528819, 538257874439, 2104098963719, 8233430727599, 32247603683099, 126410606437751, 495918532948103
Offset: 1
Donald Mintz (djmintz(AT)home.com)
G.f. = x + 5*x^2 + 19*x^3 + 69*x^4 + 251*x^5 + 923*x^6 + 3431*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 1..500
- Narcisse G. Bell Bogmis, Guy R. Biyogmam, Hesam Safa, and Calvin Tcheka, Upper bounds on the dimension of the Schur Lie-multiplier of Lie-nilpotent Leibniz n-algebras, arXiv:2403.14884 [math.RA], 2024. See p. 7.
- Joseph D. Horton and Andrew Kurn, Counting sequences with complete increasing subsequences, Congress Numerantium, 33 (1981), 75-80. MR 681905
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Jianqiang Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras, arXiv preprint arXiv:1412.8044 [math.NT], 2014.
Central column of triangle
A014473.
Right-hand column 2 of triangle
A102541.
-
[(n+1)*Catalan(n)-1: n in [1..40]]; // G. C. Greubel, Apr 07 2024
-
seq(sum((binomial(n,m))^2,m=1..n),n=1..23); # Zerinvary Lajos, Jun 19 2008
f:=n->add( add( binomial(i+j,i), i=0..n),j=0..n); [seq(f(n),n=0..12)]; # N. J. A. Sloane, Jan 31 2009
-
Table[Sum[Sum[(2n-i-j)!/(n-i)!/(n-j)!,{i,1,n}],{j,1,n}],{n,1,20}] (* Alexander Adamchuk, Jul 04 2006 *)
a[n_] := 2*(2*n-1)!/(n*(n-1)!^2)-1; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Oct 11 2012, from first formula *)
-
a(n)=binomial(2*n,n)-1 \\ Charles R Greathouse IV, Jun 26 2013
-
from math import comb
def a(n): return comb(2*n, n) - 1
print([a(n) for n in range(1, 27)]) # Michael S. Branicky, Jul 11 2023
-
def a(n) : return binomial(2*n,n) - 1
[a(n) for n in (1..26)] # Peter Luschny, Apr 21 2012
A144511
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} (i+j+k)!/(3!*i!*j!*k!).
Original entry on oeis.org
0, 1, 37, 842, 18252, 405408, 9268549, 216864652, 5165454442, 124762262630, 3047235458767, 75109521108771, 1865470016184352, 46631215889276662, 1172088706950306293, 29601905040172054928, 750748513858793527974, 19110455782881086439234, 488057675380082251617235
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..100
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
-
f:=n->add( add( add( (i+j+k)!/(3!*i!*j!*k!), i=1..n),j=1..n),k=1..n); [seq(f(n),n=0..20)];
-
Table[Sum[Sum[Sum[(i+j+k)!/i!/j!/k!/6,{i,1,n}],{j,1,n}],{k,1,n}],{n,1,30}]
Table[(5 + 3*n - 3*Binomial[2*n+2, n+1] + Sum[(1 + k + 2*n)! * HypergeometricPFQ[{1, -1 - k - n, -n}, {-1 - k - 2*n, -k - n}, 1] / ((1 + k + n)*k!*n!^2), {k, 0, n}]) / 6, {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
{a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i+j+k)!/(6*i!*j!*k!))))} \\ Seiichi Manyama, Apr 03 2019
-
{a(n) = sum(i=3, 3*n, i!*polcoef(sum(j=1, n, x^j/j!)^3, i))/6} \\ Seiichi Manyama, May 19 2019
A307318
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} (-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!).
Original entry on oeis.org
1, -2, 37, -692, 14371, -315002, 7156969, -166785320, 3960790687, -95442311582, 2326713829837, -57260397539204, 1420295354815351, -35463581316556850, 890530353765972817, -22472131364683145552, 569507678494598796631, -14487492070374441746150
Offset: 0
-
Table[Sum[(-1)^(i + j + k) * (i + j + k)!/(i!*j!*k!), {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
-
{a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, (-1)^(i+j+k)*(i+j+k)!/(i!*j!*k!))))}
-
{a(n) = sum(i=0, 3*n, (-1)^i*i!*polcoef(sum(j=0, n, x^j/j!)^3, i))} \\ Seiichi Manyama, May 20 2019
A308292
A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0
For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 5, 16, 65, 326, ...
1, 3, 19, 271, 7365, 326011, ...
1, 4, 69, 5248, 1107697, 492911196, ...
1, 5, 251, 110251, 191448941, 904434761801, ...
1, 6, 923, 2435200, 35899051101, 1856296498826906, ...
1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
A144661
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} Sum_{l=0..n} (i+j+k+l)!/(i!*j!*k!*l!).
Original entry on oeis.org
1, 65, 7365, 1107697, 191448941, 35899051101, 7101534312685, 1458965717496881, 308290573348183629, 66577182435768923245, 14629025943480502591445, 3260160391173522631759533, 735119604833362632050789701, 167408468505328518543519208949, 38448088693846486556578015883325
Offset: 0
-
f:=n->add( add( add( add( (i+j+k+l)!/(i!*j!*k!*l!), i=0..n),j=0..n),k=0..n),l=0..n); [seq(f(n),n=0..20)];
-
Table[Sum[(i + j + k + l)! / (i!*j!*k!*l!), {i, 0, n}, {j, 0, n}, {k, 0, n}, {l, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 02 2019 *)
Table[Sum[(1 + j + k + l + n)!/((1 + j + k + l)*j!*k!*l!), {j, 0, n}, {k, 0, n}, {l, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
Table[Sum[(1 + k + l + 2*n)! * HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1] / ((1 + k + l + n)*k!*l!*n!), {k, 0, n}, {l, 0, n}]/n!, {n, 0, 20}] (* Vaclav Kotesovec, Apr 03 2019 *)
-
{a(n) = sum(i=0, n, sum(j=0, n, sum(k=0, n, sum(l=0, n, (i+j+k+l)!/(i!*j!*k!*l!)))))} \\ Seiichi Manyama, Apr 02 2019
A144662
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} (i+j+k+l)!/(4!*i!*j!*k!*l!).
Original entry on oeis.org
0, 1, 266, 45296, 7958726, 1495388159, 295887993624, 60790021361170, 12845435390707724, 2774049143394729653, 609542744597785306189, 135840016223787254538508, 30629983532857972983331740, 6975352854342057056747327899, 1602003695575764851150428242804, 370631496919828403109950449644134
Offset: 0
-
f:=n->add( add( add( add( (i+j+k+l)!/(4!*i!*j!*k!*l!), i=1..n),j=1..n),k=1..n),l=1..n); [seq(f(n),n=0..16)];
-
a[n_] := Sum[(i+j+k+l)!/(4! i! j! k! l!), {i, n}, {j, n}, {k, n}, {l, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 05 2018 *)
Table[(Binomial[2*n + 2, n + 1] - 2*(1 + n) + Sum[(1 + k + l + 2*n)! HypergeometricPFQ[{1, -1 - k - l - n, -n}, {-1 - k - l - 2*n, -k - l - n}, 1]/((1 + k + l + n) k! l! (n!)^2) - (2*(1 + k + l + n)!)/((1 + k + l) k! l! n!), {k, 1, n}, {l, 1, n}])/24, {n, 0, 15}] (* Vaclav Kotesovec, Apr 04 2019 *)
A307352
a(n) = Sum_{0<=i<=j<=k<=n} (i+j+k)!/(i!*j!*k!).
Original entry on oeis.org
1, 10, 152, 2857, 59258, 1299434, 29540536, 688792297, 16365424655, 394524030964, 9621387028097, 236859068544553, 5876752849424588, 146774130990116924, 3686474939260449666, 93044751867820344115, 2358431594464812420404, 60004708149086107604240
Offset: 0
-
Table[Sum[Sum[Sum[(i+j+k)!/(i!*j!*k!), {i, 0, j}], {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
{a(n) = sum(i=0, n, sum(j=i, n, sum(k=j, n, (i+j+k)!/(i!*j!*k!))))}
A307353
a(n) = Sum_{1<=i<=j<=k<=n} (i+j+k)!/(i!*j!*k!).
Original entry on oeis.org
0, 6, 138, 2808, 59083, 1298797, 29538183, 688783509, 16365391557, 394523905488, 9621386549905, 236859066714283, 5876752842394018, 146774130963028054, 3686474939155802036, 93044751867415156290, 2358431594463240429469
Offset: 0
-
Table[Sum[Sum[Sum[(i+j+k)!/(i!*j!*k!), {i, 1, j}], {j, 1, k}], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
{a(n) = sum(i=1, n, sum(j=i, n, sum(k=j, n, (i+j+k)!/(i!*j!*k!))))}
A307358
a(n) = Sum_{0<=i<=j<=k<=n} (-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!).
Original entry on oeis.org
1, -4, 72, -1345, 27886, -610558, 13861334, -322838475, 7663363513, -184598740512, 4498935186891, -110693299767349, 2745124008220296, -68532209858173364, 1720678086867077832, -43415209670536390089, 1100146390869600888470
Offset: 0
-
Table[Sum[Sum[Sum[(-1)^(i+j+k) * (i+j+k)!/(i!*j!*k!), {i, 0, j}], {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2019 *)
-
{a(n) = sum(i=0, n, sum(j=i, n, sum(k=j, n, (-1)^(i+j+k)*(i+j+k)!/(i!*j!*k!))))}
Showing 1-9 of 9 results.
Comments