cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144679 a(n) = [n/5 + 1]*[n/5 + 2]*(3*n - 10*[n/5] + 3)/6, where [.] = floor.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 196, 217, 238, 259, 280, 308, 336, 364, 392, 420, 456, 492, 528, 564, 600, 645, 690, 735, 780, 825, 880, 935, 990, 1045, 1100, 1166, 1232, 1298, 1364, 1430, 1508, 1586, 1664
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2009

Keywords

Comments

Related to enumeration of quantum states: this is S_c defined in eq.(10b) of the O'Sullivan and Busch reference, with lambda = 5.
This coincides with the formula for an upper bound on the minimum number of monochromatic triangles in the complete graph K_{n+11} with 3-colored edges given by Cummings et al. (2013) in Corollary 3. (The paper claims that this bound is sharp only for all sufficiently large n.) - M. F. Hasler, Jun 25 2021

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^5))^2 )); // G. C. Greubel, Oct 18 2021
    
  • Maple
    n:=80; lambda:=5; S10b:=[];
    for ii from 0 to n do
    x:=floor(ii/lambda);
    snc:=1/6*(x+1)*(x+2)*(3*ii-2*x*lambda+3);
    S10b:=[op(S10b),snc];
    od:
    S10b;
    A144679 := proc(n) option remember; local k; sum(THN5(n-k),k=0..4) end: THN5:= proc(n) option remember; THN5(n):= binomial(floor(n/5)+3,3) end: seq(A144679(n), n=0..57); # Johannes W. Meijer, May 20 2011
  • Mathematica
    LinearRecurrence[{2,-1,0,0,2,-4,2,0,0,-1,2,-1}, {1,2,3,4,5,8,11,14,17,20,26,32}, 60] (* Jean-François Alcover, Nov 22 2017 *)
    CoefficientList[Series[1/((x-1)^4(x^4+x^3+x^2+x+1)^2),{x,0,100}],x] (* Harvey P. Dale, Aug 29 2021 *)
  • PARI
    apply( {A144679(n)=(3*n+3-10*n\=5)*(n+1)*(n+2)\6}, [0..55]) \\ M. F. Hasler, Jun 25 2021
    
  • Sage
    def A144679_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^5))^2 ).list()
    A144679_list(60) # G. C. Greubel, Oct 18 2021

Formula

From Johannes W. Meijer, May 20 2011: (Start)
a(n-4) + a(n-3) + a(n-2) + a(n-1) + a(n) = A122047(n+2).
G.f.: 1/((1-x)^4*(1 + x + x^2 + x^3 + x^4)^2). (End)
a(n) = r*A000292(q+1) + (5-r)*A000292(q) = (n + 2r + 1)*(q + 2)*(q + 1)/6, where A000292(q) = binomial(q+2,3), r = (n+1) mod 5, q = (n+1-r)/5. - M. F. Hasler, Jun 25 2021