A144780 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.
6, 31, 931, 865831, 749662454731, 561993796032558961827631, 315837026779085485103718410756049100028793244531
Offset: 1
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..11
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
Crossrefs
Programs
-
Mathematica
a = {}; k = 6; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a NestList[#^2-#+1&,6,10] (* Harvey P. Dale, Dec 19 2024 *)
Formula
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.
a(n) ~ c^(2^n) where is c is 2.350117384... (A144804).
Extensions
a(8) moved to b-file by Hugo Pfoertner, Aug 30 2020