A144899 Expansion of x/((1-x-x^3)*(1-x)^5).
0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-20,16,-11,5,-1).
Crossrefs
Programs
-
Magma
A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >; [A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
Maple
a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
Mathematica
CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
SageMath
def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3))) [A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
Formula
G.f.: x/((1-x-x^3)*(1-x)^5).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+4)/3)} binomial(n-2*j+4, j+5).
a(n) = A099567(n+4, 5). (End)