A144903 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Examples
Square array (A(n,k)) begins: 0, 0, 0, 0, 0, 0, 0 ... A000004; 1, 1, 1, 1, 1, 1, 1 ... A000012; 0, 1, 2, 3, 4, 5, 6 ... A001477; 0, 1, 3, 6, 10, 15, 21 ... A000217; 1, 2, 5, 11, 21, 36, 57 ... A050407; 1, 3, 8, 19, 40, 76, 133 ... ; 1, 4, 12, 31, 71, 147, 200 ... A027658; Antidiagonal triangle (T(n,k)) begins as: 0; 0, 1; 0, 1, 0; 0, 1, 1, 0; 0, 1, 2, 1, 1; 0, 1, 3, 3, 2, 1; 0, 1, 4, 6, 5, 3, 1; 0, 1, 5, 10, 11, 8, 4, 2; 0, 1, 6, 15, 21, 19, 12, 6, 3;
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Magma
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >; A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >; [A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
Maple
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end: seq(seq(A(n, d-n), n=0..d), d=0..13);
-
Mathematica
(* First program *) a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}]; Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *) (* Second Program *) A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}]; T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
SageMath
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3))) def A144903(n,k): if (k==0): return 0 else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1)) flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
Formula
G.f. of column k: x/((1-x-x^3)*(1-x)^(k-1)).
A(n, n) = A144904(n).
From G. C. Greubel, Aug 01 2022: (Start)
A(n, k) = Sum_{j=0..n-1} binomial(k+j-2, j)*A000930(n-j-1), with A(0, k) = 0.
T(n, k) = Sum_{j=0..k-1} binomial(n-k-j-2, j)*A000930(k-j-1), with T(n, 0) = 0.
T(2*n, n) = A144904(n). (End)