cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144903 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Examples

			Square array (A(n,k)) begins:
  0, 0,  0,  0,  0,   0,   0 ... A000004;
  1, 1,  1,  1,  1,   1,   1 ... A000012;
  0, 1,  2,  3,  4,   5,   6 ... A001477;
  0, 1,  3,  6, 10,  15,  21 ... A000217;
  1, 2,  5, 11, 21,  36,  57 ... A050407;
  1, 3,  8, 19, 40,  76, 133 ... ;
  1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
  0;
  0,  1;
  0,  1,  0;
  0,  1,  1,  0;
  0,  1,  2,  1,  1;
  0,  1,  3,  3,  2,  1;
  0,  1,  4,  6,  5,  3,  1;
  0,  1,  5, 10, 11,  8,  4,  2;
  0,  1,  6, 15, 21, 19, 12,  6,  3;
		

Crossrefs

Rows 0-4, 6 give: A000004, A000012, A001477, A000217, A050407(n+3), A027658.
Columns 0-9 give: A078012 and A135851(n+2), A078012(n+2) and A135851(n+4), A077868(n-1) for n>0, A050228(n-1) for n>0, A226405, A144898, A144899, A144900, A144901, A144902.
Main diagonal gives: A144904.
Cf. A000930.

Programs

  • Magma
    A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
    A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
    [A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
    
  • Maple
    A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    (* First program *)
    a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
    Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
    (* Second Program *)
    A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
    T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
    def A144903(n,k):
        if (k==0): return 0
        else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
    flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022

Formula

G.f. of column k: x/((1-x-x^3)*(1-x)^(k-1)).
A(n, n) = A144904(n).
From G. C. Greubel, Aug 01 2022: (Start)
A(n, k) = Sum_{j=0..n-1} binomial(k+j-2, j)*A000930(n-j-1), with A(0, k) = 0.
T(n, k) = Sum_{j=0..k-1} binomial(n-k-j-2, j)*A000930(k-j-1), with T(n, 0) = 0.
T(2*n, n) = A144904(n). (End)