cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A144904 Coefficient of x^n in expansion of x/((1-x-x^3)*(1-x)^(n-1)), also diagonal of A144903.

Original entry on oeis.org

0, 1, 2, 6, 21, 76, 280, 1045, 3937, 14938, 56993, 218414, 840090, 3241153, 12537263, 48604755, 188799962, 734631798, 2862843281, 11171582151, 43647688211, 170720728344, 668414462009, 2619400928928, 10273572796046, 40325085206853, 158393604268277
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144904:= func< n | n eq 0 select 0 else  (&+[Binomial(2*n-2*j-2, n+j-1): j in [0..Floor((n-1)/3)]]) >;
    [A144904(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
    a:= n-> A(n,n):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, n,
          ((27*n^3-150*n^2+195*n-12)*a(n-1)
          -(66*n^3-382*n^2+492*n+124)*a(n-2)
          +(27*n^3-156*n^2+201*n+48)*a(n-3)
          -2*(2*n-7)*(3*n^2-7*n-2)*a(n-4))/((n-1)*(3*n^2-13*n+8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jun 06 2013
  • Mathematica
    Table[Sum[Binomial[2*n-2*j-2, n+j-1], {j,0,Floor[(n-1)/3]}], {n,0,40}] (* G. C. Greubel, Jul 27 2022 *)
  • SageMath
    def A144904(n): return sum(binomial(2*n-2*j-2, n+j-1) for j in (0..((n-1)//3)))
    [A144904(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

a(n) = [x^n] x/((1-x-x^3)*(1-x)^(n-1)).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n-1)/3)} binomial(2*n-2*j-2, n+j-1).
a(n) = A099567(2*n, n). (End)
a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4) for n > 0. - Stefano Spezia, Apr 06 2024
a(n) ~ 4^n/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 08 2024

A077868 Expansion of 1/((1-x)*(1-x-x^3)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Row sums of Riordan array (1/(1-x), x*(1+x^2)). - Paul Barry, Feb 16 2005
a(n) is the number of partitions of {1, ..., n+3} into two blocks in which only 1- or 3-strings of consecutive integers can appear in a block and there is at least one 3-string. E.g., a(3)=5 because the enumerated partitions of {1,2,3,4,5,6} are 1235/46, 1345/26, 15/2346, 13/2456, 123/456. - Augustine O. Munagi, Apr 11 2005

References

  • Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.

Crossrefs

Programs

  • Magma
    A077868:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+, j+1): j in [0..Floor((n+1)/3)]]) >;
    [A077868(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2,-1,1,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008
    g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    LinearRecurrence[{1,1,0,0,-1}, {1,2,3,5,8,12}, 42] (* or *)
    CoefficientList[Series[1/((1-x)(1-x-x^3)), {x, 0, 41}], x] (* Michael De Vlieger, Jun 06 2018 *)
  • PARI
    Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a = vector(50);
    a[1] = 1; a[2] = 2; a[3] = 3;
    for(n=4,50,
    a[n] = 1 + a[n-1] + a[n-3];
    ); a} \\ Gerry Martens, Jun 03 2018
    
  • PARI
    {a(n) = if( n<0, n=-4-n; polcoeff( -1 / (1 - x) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 17 2018 */
    
  • SageMath
    def A077868(n): return sum(binomial(n-2*j+1, j+1) for j in (0..((n+1)//3)))
    [A077868(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

Partial sums of A000930. a(n-1) = Sum_{k=0..floor(n/2)} binomial(n-2*k, k+1). - Paul Barry, Jul 07 2004
a(n-3) = Sum(binomial(n-r, r)), r=1, 2, ... which is the case t=3 and k=2 in the general case of t-strings and k blocks: a(n-3, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r=1, 2, ... - Augustine O. Munagi, Apr 11 2005
From Paul Weisenhorn, Oct 28 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) for n > 4.
a(n) = a(n-2) + a(n-3) + a(n-4) + 2 for n > 3.
G.f.: 1/((1-x)*(1-x-x^3)). (End)
a(n) = 1 + a(n-1) + a(n-3), a(1)=1, a(2)=2, a(3)=3. - Gerry Martens, Jun 10 2018
a(n) = -A077888(-4-n) for all n in Z. - Michael Somos, Jun 17 2018
a(n) = A000930(n+3) - 1. - Greg Dresden, Jun 20 2021
a(n) = A099567(n+3, 4). - G. C. Greubel, Jul 27 2022

Extensions

More terms from Augustine O. Munagi, Apr 11 2005

A099567 Riordan array (1/(1-x-x^3), 1/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Comments

Inverse matrix is A099569.
Subtriangle of the triangle in A144903. - Philippe Deléham, Dec 29 2013

Examples

			Rows begin:
   1;
   1,  1;
   1,  2,   1;
   2,  3,   3,   1;
   3,  5,   6,   4,   1;
   4,  8,  11,  10,   5,   1;
   6, 12,  19,  21,  15,   6,   1;
   9, 18,  31,  40,  36,  21,   7,   1;
  13, 27,  49,  71,  76,  57,  28,   8,   1;
  19, 40,  76, 120, 147, 133,  85,  36,   9,   1;
  28, 59, 116, 196, 267, 280, 218, 121,  45,  10,   1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
    [[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
    
  • Mathematica
    T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
    T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
  • SageMath
    @CachedFunction
    def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
    flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022

Formula

Number triangle T(n, k) = Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).
Columns have g.f. (1/(1-x-x^3))*(x/(1-x))^k.
Sum_{k=0..n} T(n, k) = A099568(n).
T(n,0) = A000930(n), T(n,n) = 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 0Philippe Deléham, Dec 29 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 3*x + 3*x^2/2! + x^3/3!) = 2 + 5*x + 11*x^2/2! + 21*x^3/3! + 36*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
From G. C. Greubel, Jul 27 2022: (Start)
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A000217(n-1), for n >= 2.
T(n, n-3) = A050407(n+1), for n >= 3.
T(2*n, n) = A144904(n+1), for n >= 1. (End)

A050228 a(n) is the number of subsequences {s(k)} of {1,2,3,...n} such that s(k+1)-s(k) is 1 or 3.

Original entry on oeis.org

1, 3, 6, 11, 19, 31, 49, 76, 116, 175, 262, 390, 578, 854, 1259, 1853, 2724, 4001, 5873, 8617, 12639, 18534, 27174, 39837, 58396, 85596, 125460, 183884, 269509, 394999, 578914, 848455, 1243487, 1822435, 2670925, 3914448, 5736920, 8407883
Offset: 1

Views

Author

John W. Layman, Dec 20 1999

Keywords

Comments

The second differences c(n) of {a(n)} satisfy c(n)=c(n-1)+c(n-3) and give A000930 with the first 5 terms deleted.
Partial sums of A077868. - Paul Barry, Sep 16 2004

References

  • Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.

Crossrefs

Programs

  • Magma
    A050228:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+1, j+2): j in [0..Floor((n+1)/3)]]) >;
    [A050228(n): n in [1..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    with(combstruct): SubSetSeqU := [T, {T=Subst(U,U), S=Set(U, card>=3), U=Sequence(Z, card>=3)}, unlabeled]: seq(count(SubSetSeqU, size=n), n=9..46); # Zerinvary Lajos, Mar 18 2008
  • Mathematica
    Rest[CoefficientList[Series[1/((1-x)^2*(1-x-x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
    LinearRecurrence[{3,-3,2,-2,1},{1,3,6,11,19},50] (* Harvey P. Dale, Apr 21 2020 *)
  • PARI
    my(x='x+O('x^50)); Vec(x/((1-x)^3-x^3*(1-x)^2)) \\ G. C. Greubel, Apr 27 2017
    
  • SageMath
    def A050228(n): return sum(binomial(n-2*j+1, j+2) for j in (0..((n+1)//3)))
    [A050228(n) for n in (1..40)] # G. C. Greubel, Jul 27 2022

Formula

From Paul Barry, Sep 16 2004: (Start)
G.f.: x/((1-x)^3 - x^3(1-x)^2).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 2*a(n-4) + a(n-5).
a(n-1) = Sum_{k=0..floor(n/3)} binomial(n-2*k, k+2). (End)
G.f. = 1/((1-x)^2*(1-x-x^3)). - N. J. A. Sloane, Jun 02 2021
a(n) = A000930(n+5) - n - 4. - Greg Dresden, Jun 20 2021
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+1)/3)} binomial(n-2*j+1, j+2).
a(n) = A099567(n+1, 2). (End)

A144900 Expansion of x/((1-x-x^3)*(1-x)^6).

Original entry on oeis.org

0, 1, 7, 28, 85, 218, 498, 1045, 2055, 3840, 6887, 11945, 20153, 33228, 53741, 85522, 134254, 208344, 320200, 488103, 738951, 1112281, 1666164, 2485845, 3696406, 5481325, 8109676, 11975993, 17658694, 26005706, 38259955, 56243281, 82625979, 121321831, 178067054
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

7th column of A144903.
Cf. A099567.

Programs

  • Magma
    A144900:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+5, j+6): j in [0..Floor((n+5)/3)]]) >;
    [A144900(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(9, (i, j)-> if i=j-1 then 1 elif j=1 then [7, -21, 36, -41, 36, -27, 16, -6, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^6), {x,0,40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{7,-21,36,-41,36,-27,16,-6,1},{0,1,7,28,85,218,498,1045,2055},40] (* Harvey P. Dale, Mar 02 2016 *)
  • SageMath
    def A144900(n): return sum(binomial(n-2*j+5, j+6) for j in (0..((n+5)//3)))
    [A144900(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^6).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+5)/3)} binomial(n-2*j+5, j+6).
a(n) = A099567(n+5, 6). (End)

A144901 Expansion of x/((1-x-x^3)*(1-x)^7).

Original entry on oeis.org

0, 1, 8, 36, 121, 339, 837, 1882, 3937, 7777, 14664, 26609, 46762, 79990, 133731, 219253, 353507, 561851, 882051, 1370154, 2109105, 3221386, 4887550, 7373395, 11069801, 16551126, 24660802, 36636795, 54295489, 80301195, 118561150, 174804431, 257430410
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

8th column of A144903.
Cf. A099567.

Programs

  • Magma
    A144901:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+6, j+7): j in [0..Floor((n+6)/3)]]) >;
    [A144901(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(10, (i, j)-> if i=j-1 then 1 elif j=1 then [8, -28, 57, -77, 77, -63, 43, -22, 7, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^7), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144901(n): return sum(binomial(n-2*j+6, j+7) for j in (0..((n+6)//3)))
    [A144901(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^7).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+6)/3)} binomial(n-2*j+6, j+7).
a(n) = A099567(n+6, 7). (End)

A144902 Expansion of x/((1-x-x^3)*(1-x)^8).

Original entry on oeis.org

0, 1, 9, 45, 166, 505, 1342, 3224, 7161, 14938, 29602, 56211, 102973, 182963, 316694, 535947, 889454, 1451305, 2333356, 3703510, 5812615, 9034001, 13921551, 21294946, 32364747, 48915873, 73576675, 110213470, 164508959, 244810154, 363371304, 538175735
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

9th column of A144903.
Cf. A099567.

Programs

  • Magma
    A144903:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+7, j+8): j in [0..Floor((n+7)/3)]]) >;
    [A144903(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [9, -36, 85, -134, 154, -140, 106, -65, 29, -8, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^8), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144903(n): return sum(binomial(n-2*j+7, j+8) for j in (0..((n+7)//3)))
    [A144903(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^8).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+7)/3)} binomial(n-2*j+7, j+8).
a(n) = A099567(n+7, 8). (End)

A144898 Expansion of x/((1-x-x^3)*(1-x)^4).

Original entry on oeis.org

0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
    [A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
    [A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^4).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+3)/3)} binomial(n-2*j+3, j+4).
a(n) = A099567(n+3, 4). (End)

A144899 Expansion of x/((1-x-x^3)*(1-x)^5).

Original entry on oeis.org

0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
    [A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
    [A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^5).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+4)/3)} binomial(n-2*j+4, j+5).
a(n) = A099567(n+4, 5). (End)

A226405 Expansion of x/((1-x-x^3)*(1-x)^3).

Original entry on oeis.org

0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2013

Keywords

Comments

From Bruno Berselli, Jun 07 2013: (Start)
A050228(n) = a(n) -a(n-1), n>0.
A077868(n-1)= a(n) -2*a(n-1) +a(n-2), n>1.
A000217(n) = a(n) -a(n-1) -a(n-3), n>2.
A000930(n-1)= a(n) -3*a(n-1) +3*a(n-2) -a(n-3), n>2.
n = a(n) -2*a(n-1) +a(n-2) -a(n-3) +a(n-4), n>3.
1 = a(n) -3*a(n-1) +3*a(n-2) -2*a(n-3) +2*a(n-4) -a(n-5), n>4.
0 = a(n) -4*a(n-1) +6*a(n-2) -5*a(n-3) +4*a(n-4) -3*a(n-5) +a(n-6), n>5.
(End)

Crossrefs

Programs

  • Magma
    A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
    [A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40]  (* Bruno Berselli, Jun 07 2013 *)
    CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
    
  • SageMath
    def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
    [A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^3).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+2)/3)} binomial(n-2*j+2, j+3).
a(n) = A099567(n+2, 3). (End)
Showing 1-10 of 10 results.