A077868
Expansion of 1/((1-x)*(1-x-x^3)).
Original entry on oeis.org
1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412
Offset: 0
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1).
-
A077868:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+, j+1): j in [0..Floor((n+1)/3)]]) >;
[A077868(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2,-1,1,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008
g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009
-
LinearRecurrence[{1,1,0,0,-1}, {1,2,3,5,8,12}, 42] (* or *)
CoefficientList[Series[1/((1-x)(1-x-x^3)), {x, 0, 41}], x] (* Michael De Vlieger, Jun 06 2018 *)
-
Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
{a = vector(50);
a[1] = 1; a[2] = 2; a[3] = 3;
for(n=4,50,
a[n] = 1 + a[n-1] + a[n-3];
); a} \\ Gerry Martens, Jun 03 2018
-
{a(n) = if( n<0, n=-4-n; polcoeff( -1 / (1 - x) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 17 2018 */
-
def A077868(n): return sum(binomial(n-2*j+1, j+1) for j in (0..((n+1)//3)))
[A077868(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A099567
Riordan array (1/(1-x-x^3), 1/(1-x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0
Rows begin:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 5, 6, 4, 1;
4, 8, 11, 10, 5, 1;
6, 12, 19, 21, 15, 6, 1;
9, 18, 31, 40, 36, 21, 7, 1;
13, 27, 49, 71, 76, 57, 28, 8, 1;
19, 40, 76, 120, 147, 133, 85, 36, 9, 1;
28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1;
-
T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
[[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
-
T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
-
@CachedFunction
def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022
A105872
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k, n).
Original entry on oeis.org
1, 2, 6, 21, 75, 273, 1009, 3770, 14202, 53846, 205216, 785460, 3017106, 11624580, 44905518, 173863965, 674506059, 2621371005, 10203609597, 39773263035, 155231706951, 606554343495, 2372544034143, 9289131196485, 36401388236461
Offset: 0
-
Table[Sum[Binomial[2n-3k,n],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Jan 13 2015 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k, n)); \\ Seiichi Manyama, Jan 28 2023
Erroneous title changed by
Paul Barry, Apr 14 2010
A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
-
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
def A144903(n,k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
A360150
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 77, 288, 1090, 4159, 15964, 61557, 238221, 924597, 3597290, 14024341, 54770176, 214218966, 838959762, 3289471537, 12910910288, 50720828034, 199422778415, 784672001097, 3089564308849, 12172411084432, 47984843655991, 189260578353602
Offset: 0
-
A360150 := proc(n)
add(binomial(2*n-k,n-3*k),k=0..n/3) ;
end proc:
seq(A360150(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n - k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-k, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^5)))
A050228
a(n) is the number of subsequences {s(k)} of {1,2,3,...n} such that s(k+1)-s(k) is 1 or 3.
Original entry on oeis.org
1, 3, 6, 11, 19, 31, 49, 76, 116, 175, 262, 390, 578, 854, 1259, 1853, 2724, 4001, 5873, 8617, 12639, 18534, 27174, 39837, 58396, 85596, 125460, 183884, 269509, 394999, 578914, 848455, 1243487, 1822435, 2670925, 3914448, 5736920, 8407883
Offset: 1
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- Z. Kasa, On scattered subword complexity, arXiv preprint arXiv:1104.4425 [cs.DM], 2011.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-2,1).
-
A050228:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+1, j+2): j in [0..Floor((n+1)/3)]]) >;
[A050228(n): n in [1..40]]; // G. C. Greubel, Jul 27 2022
-
with(combstruct): SubSetSeqU := [T, {T=Subst(U,U), S=Set(U, card>=3), U=Sequence(Z, card>=3)}, unlabeled]: seq(count(SubSetSeqU, size=n), n=9..46); # Zerinvary Lajos, Mar 18 2008
-
Rest[CoefficientList[Series[1/((1-x)^2*(1-x-x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
LinearRecurrence[{3,-3,2,-2,1},{1,3,6,11,19},50] (* Harvey P. Dale, Apr 21 2020 *)
-
my(x='x+O('x^50)); Vec(x/((1-x)^3-x^3*(1-x)^2)) \\ G. C. Greubel, Apr 27 2017
-
def A050228(n): return sum(binomial(n-2*j+1, j+2) for j in (0..((n+1)//3)))
[A050228(n) for n in (1..40)] # G. C. Greubel, Jul 27 2022
A371773
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 36, 134, 507, 1937, 7449, 28783, 111623, 434130, 1692387, 6610292, 25861384, 101319095, 397428091, 1560588454, 6133768656, 24128550045, 94986663925, 374188128311, 1474980414870, 5817387549611, 22955930045826, 90629404431826, 357960414264163
Offset: 0
-
Table[Sum[Binomial[2n-k+1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Sep 09 2024 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-k+1, n-3*k));
A371777
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 57, 220, 858, 3368, 13276, 52479, 207861, 824527, 3274395, 13015081, 51769813, 206045841, 820475513, 3268499356, 13025237058, 51922543076, 207034128448, 825713206746, 3293865399518, 13142007903586, 52443095356218, 209304385553096, 835459642193284
Offset: 0
A144898
Expansion of x/((1-x-x^3)*(1-x)^4).
Original entry on oeis.org
0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0
-
A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
[A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
[A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A144899
Expansion of x/((1-x-x^3)*(1-x)^5).
Original entry on oeis.org
0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-20,16,-11,5,-1).
-
A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
[A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
[A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
Showing 1-10 of 21 results.
Comments