A371777
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 57, 220, 858, 3368, 13276, 52479, 207861, 824527, 3274395, 13015081, 51769813, 206045841, 820475513, 3268499356, 13025237058, 51922543076, 207034128448, 825713206746, 3293865399518, 13142007903586, 52443095356218, 209304385553096, 835459642193284
Offset: 0
A371758
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 1, 3, 11, 39, 141, 519, 1933, 7263, 27479, 104543, 399543, 1532779, 5899167, 22766607, 88073091, 341425551, 1326019653, 5158412943, 20096457549, 78396460299, 306190920837, 1197181197567, 4685523856881, 18354865147011, 71962695111841, 282357198103815
Offset: 0
A371774
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-k+1,n-3*k).
Original entry on oeis.org
1, 4, 21, 121, 727, 4473, 27949, 176549, 1124332, 7205511, 46411744, 300183757, 1948255421, 12681654613, 82755728730, 541213820732, 3546268982757, 23276100962571, 153004515241866, 1007131032951572, 6637396253259291, 43791520333601111
Offset: 0
A371775
a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-k+1,n-3*k).
Original entry on oeis.org
1, 5, 36, 287, 2396, 20539, 179125, 1581282, 14085997, 126357958, 1139825257, 10328791996, 93951594230, 857328996139, 7844767641718, 71951952863375, 661311093597592, 6089245462608316, 56160004711457917, 518707264791838694, 4797177987838607105
Offset: 0
A371776
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n-k+1,n-3*k).
Original entry on oeis.org
1, 6, 55, 561, 6005, 66080, 740342, 8400074, 96206994, 1109874635, 12877808194, 150122945518, 1756887201266, 20628519611407, 242891806678851, 2866906127955287, 33910670558191711, 401857349039547372, 4770115555036932777, 56706219260783415643
Offset: 0
-
Table[Sum[Binomial[5n-k+1,n-3k],{k,0,Floor[n/3]}],{n,0,20}] (* Harvey P. Dale, May 13 2025 *)
-
a(n) = sum(k=0, n\3, binomial(5*n-k+1, n-3*k));
A371819
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n-k+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 34, 118, 417, 1497, 5447, 20047, 74493, 279054, 1052467, 3992204, 15216662, 58239175, 223688159, 861769598, 3328779906, 12887832493, 49998248601, 194315972151, 756406944446, 2948649839743, 11509316352548, 44976030493706, 175942932935325
Offset: 0
A371854
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 57, 219, 847, 3290, 12819, 50066, 195909, 767790, 3013002, 11837043, 46548919, 183209125, 721628692, 2844297119, 11217639757, 44265835891, 174765349896, 690308413773, 2727823240762, 10783518961394, 42644560775835, 168699835910561, 667580653569309
Offset: 0
Showing 1-7 of 7 results.