cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A371773 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+1,n-3*k).

Original entry on oeis.org

1, 3, 10, 36, 134, 507, 1937, 7449, 28783, 111623, 434130, 1692387, 6610292, 25861384, 101319095, 397428091, 1560588454, 6133768656, 24128550045, 94986663925, 374188128311, 1474980414870, 5817387549611, 22955930045826, 90629404431826, 357960414264163
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2n-k+1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Sep 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-k+1, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^2-x^3) * (1-x)^n).
a(n) = binomial(2*(n-1), n-1)*hypergeom([1, (1-n)/3, (2-n)/3, 1-n/3], [1-n, 3/2-n, n], -27/4). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: n*(n^2 - 7)*a(n) = (9*n^3 - 2*n^2 - 79*n + 60)*a(n-1) - 2*(12*n^3 - 5*n^2 - 124*n + 150)*a(n-2) + (17*n^3 - 8*n^2 - 183*n + 240)*a(n-3) - 2*(2*n - 5)*(n^2 + 2*n - 6)*a(n-4).
a(n) ~ 2^(2*n+2) / sqrt(Pi*n). (End)

A371758 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 11, 39, 141, 519, 1933, 7263, 27479, 104543, 399543, 1532779, 5899167, 22766607, 88073091, 341425551, 1326019653, 5158412943, 20096457549, 78396460299, 306190920837, 1197181197567, 4685523856881, 18354865147011, 71962695111841, 282357198103815
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x^3) * (1-x)^n).
a(n) = binomial(2*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-2*n)/3, 2*(1-n)/3, 1-2*n/3], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 3*n*(7*n-11)*a(n) = 6*(2*n-3)*(7*n-4)*a(n-1) - n*(7*n-11)*a(n-2) + 2*(2*n-3)*(7*n-4)*a(n-3).
a(n) ~ 2^(2*n+2) / (7*sqrt(Pi*n)). (End)

A360168 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360168 := proc(n)
        add(binomial(2*n,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^6) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-4*n+3)*a(n-1) +8*(2*n-3)*a(n-2) +3*(-n+2)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-2)). - Seiichi Manyama, Apr 10 2024

A371780 a(n) = Sum_{k=0..floor(n/3)} binomial(5*n+2,n-3*k).

Original entry on oeis.org

1, 7, 66, 681, 7337, 81081, 911153, 10361554, 118881714, 1373402934, 15954079557, 186165866937, 2180501226751, 25620628577083, 301858589475117, 3564841627421691, 42186363329210473, 500142626996777355, 5939062937833796486, 70626949319708756435
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(5*n+2,n-3*k),k=0..n/3); end proc:
    map(f, [$0..100]); # Robert Israel, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(5*n+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(4*n)).

A371778 a(n) = Sum_{k=0..floor(n/3)} binomial(3*n+2,n-3*k).

Original entry on oeis.org

1, 5, 28, 166, 1015, 6324, 39901, 254035, 1628380, 10493680, 67914088, 441086947, 2873255906, 18763759019, 122803467241, 805241108334, 5288922607095, 34789875710568, 229147231044397, 1511104857207706, 9975701630282920, 65920216186587257
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(2*n)).

A371779 a(n) = Sum_{k=0..floor(n/3)} binomial(4*n+2,n-3*k).

Original entry on oeis.org

1, 6, 45, 365, 3078, 26565, 232831, 2063235, 18435021, 165780758, 1498533273, 13603087800, 123920995101, 1132284232215, 10372554403620, 95233251146671, 876081280823430, 8073359613286509, 74513645742072841, 688682977876117698, 6373025238727622277
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(4*n+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(3*n)).

A371820 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n+2,n-3*k).

Original entry on oeis.org

1, 4, 15, 55, 200, 726, 2640, 9636, 35343, 130339, 483395, 1802901, 6760781, 25482643, 96506229, 367077447, 1401772536, 5372120718, 20653929804, 79634421312, 307826528346, 1192608522258, 4629875048634, 18006340509702, 70142823370656, 273633773330844
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(2*n+2, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3+x^3) * (1-x)^n).
a(n) = binomial(2*(1+n), n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [1+n/3, (4+n)/3, (5+n)/3], 1). - Stefano Spezia, Apr 07 2024
a(n) ~ 2^(2*n+1) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 19 2024

A371873 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+1,n-3*k).

Original entry on oeis.org

1, 3, 10, 36, 135, 517, 2003, 7815, 30634, 120480, 475002, 1876294, 7422676, 29400192, 116567356, 462561572, 1836843591, 7298613997, 29016050831, 115408159467, 459209330821, 1827849895817, 7277945888781, 28986847296997, 115479393316211, 460159673245743
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+1, n-3*k));

Formula

a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-1)).
Showing 1-8 of 8 results.