A371773
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 36, 134, 507, 1937, 7449, 28783, 111623, 434130, 1692387, 6610292, 25861384, 101319095, 397428091, 1560588454, 6133768656, 24128550045, 94986663925, 374188128311, 1474980414870, 5817387549611, 22955930045826, 90629404431826, 357960414264163
Offset: 0
-
Table[Sum[Binomial[2n-k+1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Sep 09 2024 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-k+1, n-3*k));
A371758
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 1, 3, 11, 39, 141, 519, 1933, 7263, 27479, 104543, 399543, 1532779, 5899167, 22766607, 88073091, 341425551, 1326019653, 5158412943, 20096457549, 78396460299, 306190920837, 1197181197567, 4685523856881, 18354865147011, 71962695111841, 282357198103815
Offset: 0
A360168
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).
Original entry on oeis.org
1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0
-
A360168 := proc(n)
add(binomial(2*n,n-3*k),k=0..n/3) ;
end proc:
seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
-
a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
-
my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))
A371780
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n+2,n-3*k).
Original entry on oeis.org
1, 7, 66, 681, 7337, 81081, 911153, 10361554, 118881714, 1373402934, 15954079557, 186165866937, 2180501226751, 25620628577083, 301858589475117, 3564841627421691, 42186363329210473, 500142626996777355, 5939062937833796486, 70626949319708756435
Offset: 0
-
f:= proc(n) local k; add(binomial(5*n+2,n-3*k),k=0..n/3); end proc:
map(f, [$0..100]); # Robert Israel, Apr 22 2024
-
a(n) = sum(k=0, n\3, binomial(5*n+2, n-3*k));
A371778
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n+2,n-3*k).
Original entry on oeis.org
1, 5, 28, 166, 1015, 6324, 39901, 254035, 1628380, 10493680, 67914088, 441086947, 2873255906, 18763759019, 122803467241, 805241108334, 5288922607095, 34789875710568, 229147231044397, 1511104857207706, 9975701630282920, 65920216186587257
Offset: 0
A371779
a(n) = Sum_{k=0..floor(n/3)} binomial(4*n+2,n-3*k).
Original entry on oeis.org
1, 6, 45, 365, 3078, 26565, 232831, 2063235, 18435021, 165780758, 1498533273, 13603087800, 123920995101, 1132284232215, 10372554403620, 95233251146671, 876081280823430, 8073359613286509, 74513645742072841, 688682977876117698, 6373025238727622277
Offset: 0
A371820
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(2*n+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 55, 200, 726, 2640, 9636, 35343, 130339, 483395, 1802901, 6760781, 25482643, 96506229, 367077447, 1401772536, 5372120718, 20653929804, 79634421312, 307826528346, 1192608522258, 4629875048634, 18006340509702, 70142823370656, 273633773330844
Offset: 0
A371873
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 36, 135, 517, 2003, 7815, 30634, 120480, 475002, 1876294, 7422676, 29400192, 116567356, 462561572, 1836843591, 7298613997, 29016050831, 115408159467, 459209330821, 1827849895817, 7277945888781, 28986847296997, 115479393316211, 460159673245743
Offset: 0
Showing 1-8 of 8 results.