A371773
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+1,n-3*k).
Original entry on oeis.org
1, 3, 10, 36, 134, 507, 1937, 7449, 28783, 111623, 434130, 1692387, 6610292, 25861384, 101319095, 397428091, 1560588454, 6133768656, 24128550045, 94986663925, 374188128311, 1474980414870, 5817387549611, 22955930045826, 90629404431826, 357960414264163
Offset: 0
-
Table[Sum[Binomial[2n-k+1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Sep 09 2024 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-k+1, n-3*k));
A371777
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+2,n-3*k).
Original entry on oeis.org
1, 4, 15, 57, 220, 858, 3368, 13276, 52479, 207861, 824527, 3274395, 13015081, 51769813, 206045841, 820475513, 3268499356, 13025237058, 51922543076, 207034128448, 825713206746, 3293865399518, 13142007903586, 52443095356218, 209304385553096, 835459642193284
Offset: 0
A371770
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 2, 10, 57, 338, 2057, 12741, 79914, 505954, 3226638, 20696685, 133382658, 862978221, 5601919325, 36467212610, 237974911737, 1556281907586, 10196788555859, 66921360130374, 439860632463462, 2895002186799453, 19077000179746293, 125849150650146714
Offset: 0
-
f:= proc(n) local k; add(binomial(3*n-3*k-1,n-3*k),k=0..n/3) end proc:
map(f, [$0..30]); # Robert Israel, Feb 28 2025
-
a(n) = sum(k=0, n\3, binomial(3*n-3*k-1, n-3*k));
A371771
a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 3, 21, 166, 1377, 11748, 102088, 898677, 7987305, 71517307, 644134026, 5829345492, 52964836184, 482846377185, 4414405051413, 40458397722306, 371605426607673, 3419639400458316, 31521758873514301, 291000881055737811, 2690082750919841442
Offset: 0
-
f:= proc(n) local k; add(binomial(4*n-3*k-1,n-3*k),k=0..n/3) end proc:
map(f, [$0..30]); # Robert Israel, Feb 28 2025
-
a(n) = sum(k=0, n\3, binomial(4*n-3*k-1, n-3*k));
A371772
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 4, 36, 365, 3892, 42714, 477621, 5411109, 61901268, 713435333, 8271470666, 96361329024, 1127086021461, 13227336997645, 155680966681101, 1836862248992565, 21719923705450260, 257316706385394615, 3053599633736172765, 36292098436808314572, 431918050456887676362
Offset: 0
A371871
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-2,n-3*k).
Original entry on oeis.org
1, 0, 1, 5, 18, 66, 246, 924, 3493, 13277, 50697, 194327, 747319, 2882061, 11142027, 43167573, 167561586, 651513594, 2537041938, 9892847952, 38623197264, 150959213886, 590626854072, 2312979822738, 9065733950526, 35561306875380, 139595183125750
Offset: 0
-
A371871 := proc(n)
1/(1-x^3)/(1-x)^(n-1) ;
coeftayl(%,x=0,n) ;
end proc:
seq(A371871(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k-2, n-3*k));
Showing 1-6 of 6 results.