A371758
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 1, 3, 11, 39, 141, 519, 1933, 7263, 27479, 104543, 399543, 1532779, 5899167, 22766607, 88073091, 341425551, 1326019653, 5158412943, 20096457549, 78396460299, 306190920837, 1197181197567, 4685523856881, 18354865147011, 71962695111841, 282357198103815
Offset: 0
A371771
a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 3, 21, 166, 1377, 11748, 102088, 898677, 7987305, 71517307, 644134026, 5829345492, 52964836184, 482846377185, 4414405051413, 40458397722306, 371605426607673, 3419639400458316, 31521758873514301, 291000881055737811, 2690082750919841442
Offset: 0
-
f:= proc(n) local k; add(binomial(4*n-3*k-1,n-3*k),k=0..n/3) end proc:
map(f, [$0..30]); # Robert Israel, Feb 28 2025
-
a(n) = sum(k=0, n\3, binomial(4*n-3*k-1, n-3*k));
A371772
a(n) = Sum_{k=0..floor(n/3)} binomial(5*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 4, 36, 365, 3892, 42714, 477621, 5411109, 61901268, 713435333, 8271470666, 96361329024, 1127086021461, 13227336997645, 155680966681101, 1836862248992565, 21719923705450260, 257316706385394615, 3053599633736172765, 36292098436808314572, 431918050456887676362
Offset: 0
A371774
a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-k+1,n-3*k).
Original entry on oeis.org
1, 4, 21, 121, 727, 4473, 27949, 176549, 1124332, 7205511, 46411744, 300183757, 1948255421, 12681654613, 82755728730, 541213820732, 3546268982757, 23276100962571, 153004515241866, 1007131032951572, 6637396253259291, 43791520333601111
Offset: 0
A371816
a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(3*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 2, 10, 55, 322, 1947, 12013, 75154, 474946, 3024742, 19381045, 124797862, 806875421, 5234713031, 34060165282, 222174355575, 1452425614146, 9513309908589, 62418283102246, 410161124310550, 2698932409666237, 17781425199962255, 117281204608676426
Offset: 0
-
Table[Sum[(-1)^k Binomial[3n-3k-1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Aug 07 2025 *)
-
a(n) = sum(k=0, n\3, (-1)^k*binomial(3*n-3*k-1, n-3*k));
Showing 1-5 of 5 results.