cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A344003 Erroneous version of A050228 (if initial 0 is ignored).

Original entry on oeis.org

0, 1, 3, 6, 11, 19, 31, 49, 76, 106, 155, 232, 350
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2021

Keywords

Comments

Included in accordance with OEIS rule of including published but erroneous sequences in order to serve as pointers to the correct versions.

A077868 Expansion of 1/((1-x)*(1-x-x^3)).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Row sums of Riordan array (1/(1-x), x*(1+x^2)). - Paul Barry, Feb 16 2005
a(n) is the number of partitions of {1, ..., n+3} into two blocks in which only 1- or 3-strings of consecutive integers can appear in a block and there is at least one 3-string. E.g., a(3)=5 because the enumerated partitions of {1,2,3,4,5,6} are 1235/46, 1345/26, 15/2346, 13/2456, 123/456. - Augustine O. Munagi, Apr 11 2005

References

  • Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.

Crossrefs

Programs

  • Magma
    A077868:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+, j+1): j in [0..Floor((n+1)/3)]]) >;
    [A077868(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2,-1,1,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008
    g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    LinearRecurrence[{1,1,0,0,-1}, {1,2,3,5,8,12}, 42] (* or *)
    CoefficientList[Series[1/((1-x)(1-x-x^3)), {x, 0, 41}], x] (* Michael De Vlieger, Jun 06 2018 *)
  • PARI
    Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a = vector(50);
    a[1] = 1; a[2] = 2; a[3] = 3;
    for(n=4,50,
    a[n] = 1 + a[n-1] + a[n-3];
    ); a} \\ Gerry Martens, Jun 03 2018
    
  • PARI
    {a(n) = if( n<0, n=-4-n; polcoeff( -1 / (1 - x) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 17 2018 */
    
  • SageMath
    def A077868(n): return sum(binomial(n-2*j+1, j+1) for j in (0..((n+1)//3)))
    [A077868(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

Partial sums of A000930. a(n-1) = Sum_{k=0..floor(n/2)} binomial(n-2*k, k+1). - Paul Barry, Jul 07 2004
a(n-3) = Sum(binomial(n-r, r)), r=1, 2, ... which is the case t=3 and k=2 in the general case of t-strings and k blocks: a(n-3, k, t) = Sum(binomial(n-r*(t-1), r)*S2(n-r*(t-1)-1, k-1)), r=1, 2, ... - Augustine O. Munagi, Apr 11 2005
From Paul Weisenhorn, Oct 28 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) for n > 4.
a(n) = a(n-2) + a(n-3) + a(n-4) + 2 for n > 3.
G.f.: 1/((1-x)*(1-x-x^3)). (End)
a(n) = 1 + a(n-1) + a(n-3), a(1)=1, a(2)=2, a(3)=3. - Gerry Martens, Jun 10 2018
a(n) = -A077888(-4-n) for all n in Z. - Michael Somos, Jun 17 2018
a(n) = A000930(n+3) - 1. - Greg Dresden, Jun 20 2021
a(n) = A099567(n+3, 4). - G. C. Greubel, Jul 27 2022

Extensions

More terms from Augustine O. Munagi, Apr 11 2005

A099567 Riordan array (1/(1-x-x^3), 1/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 22 2004

Keywords

Comments

Inverse matrix is A099569.
Subtriangle of the triangle in A144903. - Philippe Deléham, Dec 29 2013

Examples

			Rows begin:
   1;
   1,  1;
   1,  2,   1;
   2,  3,   3,   1;
   3,  5,   6,   4,   1;
   4,  8,  11,  10,   5,   1;
   6, 12,  19,  21,  15,   6,   1;
   9, 18,  31,  40,  36,  21,   7,   1;
  13, 27,  49,  71,  76,  57,  28,   8,   1;
  19, 40,  76, 120, 147, 133,  85,  36,   9,   1;
  28, 59, 116, 196, 267, 280, 218, 121,  45,  10,   1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
    [[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
    
  • Mathematica
    T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
    T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
  • SageMath
    @CachedFunction
    def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
    flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022

Formula

Number triangle T(n, k) = Sum_{j=0..floor(n/3)} binomial(n-2*j, k+j).
Columns have g.f. (1/(1-x-x^3))*(x/(1-x))^k.
Sum_{k=0..n} T(n, k) = A099568(n).
T(n,0) = A000930(n), T(n,n) = 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 0Philippe Deléham, Dec 29 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 3*x + 3*x^2/2! + x^3/3!) = 2 + 5*x + 11*x^2/2! + 21*x^3/3! + 36*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
From G. C. Greubel, Jul 27 2022: (Start)
T(n, n-1) = n, for n >= 1.
T(n, n-2) = A000217(n-1), for n >= 2.
T(n, n-3) = A050407(n+1), for n >= 3.
T(2*n, n) = A144904(n+1), for n >= 1. (End)

A144903 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Examples

			Square array (A(n,k)) begins:
  0, 0,  0,  0,  0,   0,   0 ... A000004;
  1, 1,  1,  1,  1,   1,   1 ... A000012;
  0, 1,  2,  3,  4,   5,   6 ... A001477;
  0, 1,  3,  6, 10,  15,  21 ... A000217;
  1, 2,  5, 11, 21,  36,  57 ... A050407;
  1, 3,  8, 19, 40,  76, 133 ... ;
  1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
  0;
  0,  1;
  0,  1,  0;
  0,  1,  1,  0;
  0,  1,  2,  1,  1;
  0,  1,  3,  3,  2,  1;
  0,  1,  4,  6,  5,  3,  1;
  0,  1,  5, 10, 11,  8,  4,  2;
  0,  1,  6, 15, 21, 19, 12,  6,  3;
		

Crossrefs

Rows 0-4, 6 give: A000004, A000012, A001477, A000217, A050407(n+3), A027658.
Columns 0-9 give: A078012 and A135851(n+2), A078012(n+2) and A135851(n+4), A077868(n-1) for n>0, A050228(n-1) for n>0, A226405, A144898, A144899, A144900, A144901, A144902.
Main diagonal gives: A144904.
Cf. A000930.

Programs

  • Magma
    A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
    A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
    [A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
    
  • Maple
    A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..13);
  • Mathematica
    (* First program *)
    a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
    Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
    (* Second Program *)
    A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
    T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
    def A144903(n,k):
        if (k==0): return 0
        else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
    flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022

Formula

G.f. of column k: x/((1-x-x^3)*(1-x)^(k-1)).
A(n, n) = A144904(n).
From G. C. Greubel, Aug 01 2022: (Start)
A(n, k) = Sum_{j=0..n-1} binomial(k+j-2, j)*A000930(n-j-1), with A(0, k) = 0.
T(n, k) = Sum_{j=0..k-1} binomial(n-k-j-2, j)*A000930(k-j-1), with T(n, 0) = 0.
T(2*n, n) = A144904(n). (End)

A144898 Expansion of x/((1-x-x^3)*(1-x)^4).

Original entry on oeis.org

0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
    [A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
    [A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^4).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+3)/3)} binomial(n-2*j+3, j+4).
a(n) = A099567(n+3, 4). (End)

A144899 Expansion of x/((1-x-x^3)*(1-x)^5).

Original entry on oeis.org

0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2008

Keywords

Crossrefs

Programs

  • Magma
    A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
    [A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
  • SageMath
    def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
    [A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^5).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+4)/3)} binomial(n-2*j+4, j+5).
a(n) = A099567(n+4, 5). (End)

A226405 Expansion of x/((1-x-x^3)*(1-x)^3).

Original entry on oeis.org

0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2013

Keywords

Comments

From Bruno Berselli, Jun 07 2013: (Start)
A050228(n) = a(n) -a(n-1), n>0.
A077868(n-1)= a(n) -2*a(n-1) +a(n-2), n>1.
A000217(n) = a(n) -a(n-1) -a(n-3), n>2.
A000930(n-1)= a(n) -3*a(n-1) +3*a(n-2) -a(n-3), n>2.
n = a(n) -2*a(n-1) +a(n-2) -a(n-3) +a(n-4), n>3.
1 = a(n) -3*a(n-1) +3*a(n-2) -2*a(n-3) +2*a(n-4) -a(n-5), n>4.
0 = a(n) -4*a(n-1) +6*a(n-2) -5*a(n-3) +4*a(n-4) -3*a(n-5) +a(n-6), n>5.
(End)

Crossrefs

Programs

  • Magma
    A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
    [A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40]  (* Bruno Berselli, Jun 07 2013 *)
    CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
    
  • SageMath
    def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
    [A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^3).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+2)/3)} binomial(n-2*j+2, j+3).
a(n) = A099567(n+2, 3). (End)

A048516 Array T read by diagonals: T(m,n)=number of subsets S of {1,2,3,...,m+n-1} such that |S|>1 and |a-b|>=m for all distinct a and b in S, m=1,2,3,...; n=1,2,3,...

Original entry on oeis.org

0, 0, 1, 0, 4, 1, 0, 11, 3, 1, 0, 26, 7, 3, 1, 0, 57, 14, 6, 3, 1, 0, 120, 26, 11, 6, 3, 1, 0, 247, 46, 19, 10, 6, 3, 1, 0, 502, 79, 31, 16, 10, 6, 3, 1, 0, 1013, 133, 49, 25, 15, 10, 6, 3, 1, 0, 2036, 221, 76, 38, 22, 15, 10, 6, 3, 1, 0, 4083, 364
Offset: 1

Views

Author

Keywords

Examples

			Diagonals: {0}; {1,0}; {4,1,0}; ...
		

Crossrefs

A000295 (row 1), A001924 (row 2), A050228 (row 3).

Formula

T(m,n) = [x^m] 1/((1-x^2)*(1-x-x^n)). - Sean A. Irvine, Jun 19 2021

A335184 a(n) is the number of subsets of {1,2,...,n} with at least two elements and the difference between successive elements at least 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 40, 55, 75, 101, 134, 176, 230, 300, 391, 509, 661, 856, 1106, 1427, 1840, 2372, 3057, 3938, 5070, 6524, 8392, 10793, 13880, 17849, 22951, 29508, 37934, 48762, 62678, 80564, 103553, 133100, 171074, 219877, 282597, 363204, 466801, 599946, 771066, 990990
Offset: 0

Views

Author

Enrique Navarrete, May 25 2020

Keywords

Comments

For n >= 6 the sequence contains the triangular numbers; for n >= 12 we have to add the tetrahedral numbers; for n >= 18 we have to add the numbers binomial(n,4) (starting with 0,1,5,...); for n >= 24 we have to add the numbers binomial(n,5) (starting with 0,1,6,..); in general, for n >= 6*k we have to add to the sequence the numbers binomial(n, k+1), k >= 1.
For example, a(26) = 1106 = 210+560+330+6, where 210 is a triangular number, 560 is a tetrahedral number, 330 is a number binomial(n,4) and 6 is a number binomial(m,5) (with the proper n, m due to shifts in names of the sequences).
The sequence counts sets with more than 2 elements such as {1,7,14}, {1,8,14}, {2,8,14,20}, etc. The first 3-element set is {1,7,13}, the first 4-element set is {1,7,13,19}, etc. Every time a larger set needs to be counted is when we have to add a term binomial(n, k+1).

Examples

			a(11) = 15 and the 15 subsets of {1,2,...11} with at least two elements and whose difference between successive elements is at least 6 are: {1,7}, {1,8}, {1,9}, {1,10}, {1,11}, {2,8}, {2,9}, {2,10}, {2,11}, {3,9}, {3,10}, {3,11}, {4,10}, {4,11}, {5,11}.
		

Crossrefs

Similar sequences with minimum difference 1..5 are A000295, A001924, A050228, A145131, A330910.

Programs

Formula

a(n) = Sum_{k=0..floor((n-1)/6)} binomial(n-6*k+k+1, k+2). - Andrew Howroyd, Aug 11 2020
From Colin Barker, May 26 2020: (Start)
G.f.: x^7 / ((1 - x)^2*(1 - x - x^6)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-6) - 2*a(n-7) + a(n-8) for n>=8.
(End)
Showing 1-9 of 9 results.