A344003
Erroneous version of A050228 (if initial 0 is ignored).
Original entry on oeis.org
0, 1, 3, 6, 11, 19, 31, 49, 76, 106, 155, 232, 350
Offset: 0
- Chu, Hung Viet. Various Sequences from Counting Subsets, Fib. Quart., 59:2 (May 2021), 152-157. [But beware errors.] [Note: there is a different paper on the arXiv with the same author and tile, but it lacks the sequences. Do not replace this reference with a link to the arXiv version.]
A077868
Expansion of 1/((1-x)*(1-x-x^3)).
Original entry on oeis.org
1, 2, 3, 5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412
Offset: 0
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- A. O. Munagi, Set Partitions with Successions and Separations, IJMMS 2005:3 (2005), 451-463.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1).
-
A077868:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+, j+1): j in [0..Floor((n+1)/3)]]) >;
[A077868(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [2,-1,1,-1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..41); # Alois P. Heinz, Sep 05 2008
g:=(1+z+z^2)/(1-z-z^3): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-1, n=1..42); # Zerinvary Lajos, Jan 09 2009
-
LinearRecurrence[{1,1,0,0,-1}, {1,2,3,5,8,12}, 42] (* or *)
CoefficientList[Series[1/((1-x)(1-x-x^3)), {x, 0, 41}], x] (* Michael De Vlieger, Jun 06 2018 *)
-
Vec(1/(1-x)/(1-x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
{a = vector(50);
a[1] = 1; a[2] = 2; a[3] = 3;
for(n=4,50,
a[n] = 1 + a[n-1] + a[n-3];
); a} \\ Gerry Martens, Jun 03 2018
-
{a(n) = if( n<0, n=-4-n; polcoeff( -1 / (1 - x) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( 1 / (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jun 17 2018 */
-
def A077868(n): return sum(binomial(n-2*j+1, j+1) for j in (0..((n+1)//3)))
[A077868(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A099567
Riordan array (1/(1-x-x^3), 1/(1-x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0
Rows begin:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 5, 6, 4, 1;
4, 8, 11, 10, 5, 1;
6, 12, 19, 21, 15, 6, 1;
9, 18, 31, 40, 36, 21, 7, 1;
13, 27, 49, 71, 76, 57, 28, 8, 1;
19, 40, 76, 120, 147, 133, 85, 36, 9, 1;
28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1;
-
T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
[[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
-
T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
-
@CachedFunction
def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022
A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
-
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
def A144903(n,k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
A144898
Expansion of x/((1-x-x^3)*(1-x)^4).
Original entry on oeis.org
0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0
-
A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
[A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
[A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A144899
Expansion of x/((1-x-x^3)*(1-x)^5).
Original entry on oeis.org
0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-20,16,-11,5,-1).
-
A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
[A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
[A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A226405
Expansion of x/((1-x-x^3)*(1-x)^3).
Original entry on oeis.org
0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0
Cf.
A000930,
A050228,
A077868,
A144898,
A144899,
A144900,
A144901,
A144902,
A144903,
A144904,
A226405.
-
A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
[A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40] (* Bruno Berselli, Jun 07 2013 *)
CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
-
def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
[A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A048516
Array T read by diagonals: T(m,n)=number of subsets S of {1,2,3,...,m+n-1} such that |S|>1 and |a-b|>=m for all distinct a and b in S, m=1,2,3,...; n=1,2,3,...
Original entry on oeis.org
0, 0, 1, 0, 4, 1, 0, 11, 3, 1, 0, 26, 7, 3, 1, 0, 57, 14, 6, 3, 1, 0, 120, 26, 11, 6, 3, 1, 0, 247, 46, 19, 10, 6, 3, 1, 0, 502, 79, 31, 16, 10, 6, 3, 1, 0, 1013, 133, 49, 25, 15, 10, 6, 3, 1, 0, 2036, 221, 76, 38, 22, 15, 10, 6, 3, 1, 0, 4083, 364
Offset: 1
Diagonals: {0}; {1,0}; {4,1,0}; ...
A335184
a(n) is the number of subsets of {1,2,...,n} with at least two elements and the difference between successive elements at least 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 10, 15, 21, 29, 40, 55, 75, 101, 134, 176, 230, 300, 391, 509, 661, 856, 1106, 1427, 1840, 2372, 3057, 3938, 5070, 6524, 8392, 10793, 13880, 17849, 22951, 29508, 37934, 48762, 62678, 80564, 103553, 133100, 171074, 219877, 282597, 363204, 466801, 599946, 771066, 990990
Offset: 0
a(11) = 15 and the 15 subsets of {1,2,...11} with at least two elements and whose difference between successive elements is at least 6 are: {1,7}, {1,8}, {1,9}, {1,10}, {1,11}, {2,8}, {2,9}, {2,10}, {2,11}, {3,9}, {3,10}, {3,11}, {4,10}, {4,11}, {5,11}.
-
With[{k = 6}, Array[Count[Subsets[Range[# + k], {2, # + k}], ?(AllTrue[Differences@ #, # >= k &] &)] &, 16]] (* _Michael De Vlieger, Jun 26 2020 *)
LinearRecurrence[{3,-3,1,0,0,1,-2,1},{0,0,0,0,0,0,0,1},60] (* Harvey P. Dale, Nov 22 2022 *)
-
a(n) = {my(d=6); sum(k=0, (n-1)\d, binomial(n-d*k+k+1, k+2))} \\ Andrew Howroyd, Aug 11 2020
Showing 1-9 of 9 results.
Comments