A344002
Erroneous version of A077868 (if initial 0 is ignored).
Original entry on oeis.org
0, 1, 2, 3, 5, 8, 12, 18, 27, 30, 49, 77, 118
Offset: 0
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157. [But beware errors.] [Note: there is a different paper on the arXiv with the same author and tile, but it lacks the sequences. Do not replace this reference with a link to the arXiv version.]
A171861
Expansion of x*(1+x+x^2) / ( (x-1)*(x^3+x^2-1) ).
Original entry on oeis.org
1, 2, 4, 6, 9, 13, 18, 25, 34, 46, 62, 83, 111, 148, 197, 262, 348, 462, 613, 813, 1078, 1429, 1894, 2510, 3326, 4407, 5839, 7736, 10249, 13578, 17988, 23830, 31569, 41821, 55402, 73393, 97226, 128798, 170622, 226027, 299423, 396652, 525453, 696078, 922108
Offset: 1
a(n) enumerates length n+2 sequences on {H,T} that end in HHT but do not contain the contiguous subsequence TTT.
a(3)=4 because we have: TTHHT, THHHT, HTHHT, HHHHT.
a(4)=6 because we have: TTHHHT, THTHHT, THHHHT, HTTHHT, HTHHHT, HHHHHT. - _Geoffrey Critzer_, Mar 01 2014
Related sequences are
A000045 (HHH beats HHT, HTT beats TTH),
A006498 (HHH beats HTH),
A023434 (HHH beats HTT),
A000930 (HHH beats THT, HTH beats HHT),
A000931 (HHH beats TTH),
A077868 (HHT beats HTH),
A002620 (HHT beats HTT),
A000012 (HHT beats THH),
A004277 (HHT beats THT),
A070550 (HTH beats HHH),
A000027 (HTH beats HTT),
A097333 (HTH beats THH),
A040000 (HTH beats TTH),
A068921 (HTH beats TTT),
A054405 (HTT beats HHH),
A008619 (HTT beats HHT),
A038718 (HTT beats THT),
A128588 (HTT beats TTT).
Cf.
A164315 (essentially the same sequence).
-
A171861 := proc(n) option remember; if n <=4 then op(n,[1,2,4,6]); else procname(n-1)+procname(n-2)-procname(n-4) ; end if; end proc:
-
nn=44;CoefficientList[Series[x(1+x+x^2)/(1-x-x^2+x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 01 2014 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^(n-1)*[1;2;4;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A099567
Riordan array (1/(1-x-x^3), 1/(1-x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 5, 6, 4, 1, 4, 8, 11, 10, 5, 1, 6, 12, 19, 21, 15, 6, 1, 9, 18, 31, 40, 36, 21, 7, 1, 13, 27, 49, 71, 76, 57, 28, 8, 1, 19, 40, 76, 120, 147, 133, 85, 36, 9, 1, 28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1, 41, 87, 175, 312, 463, 547, 498, 339, 166, 55, 11, 1
Offset: 0
Rows begin:
1;
1, 1;
1, 2, 1;
2, 3, 3, 1;
3, 5, 6, 4, 1;
4, 8, 11, 10, 5, 1;
6, 12, 19, 21, 15, 6, 1;
9, 18, 31, 40, 36, 21, 7, 1;
13, 27, 49, 71, 76, 57, 28, 8, 1;
19, 40, 76, 120, 147, 133, 85, 36, 9, 1;
28, 59, 116, 196, 267, 280, 218, 121, 45, 10, 1;
-
T:= func< n,k | (&+[Binomial(n-2*j, k+j): j in [0..Floor(n/3)]]) >;
[[T(n,k): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Jul 27 2022
-
T[n_, 0]:=T[n,0]=HypergeometricPFQ[{(1-n)/3,(2-n)/3,-n/3}, {(1-n)/2,-n/2}, -27/4];
T[n_, k_]:= T[n,k]= If[k==n, 1, T[n-1,k-1] +T[n-1,k]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 28 2017 *)
-
@CachedFunction
def A099567(n, k): return sum( binomial(n-2*j, k+j) for j in (0..(n//3)) )
flatten([[A099567(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 27 2022
A144903
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of x/((1-x-x^3)*(1-x)^(k-1)).
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 3, 3, 2, 1, 0, 1, 4, 6, 5, 3, 1, 0, 1, 5, 10, 11, 8, 4, 2, 0, 1, 6, 15, 21, 19, 12, 6, 3, 0, 1, 7, 21, 36, 40, 31, 18, 9, 4, 0, 1, 8, 28, 57, 76, 71, 49, 27, 13, 6, 0, 1, 9, 36, 85, 133, 147, 120, 76, 40, 19, 9, 0, 1, 10, 45, 121, 218, 280, 267, 196, 116, 59, 28, 13
Offset: 0
Square array (A(n,k)) begins:
0, 0, 0, 0, 0, 0, 0 ... A000004;
1, 1, 1, 1, 1, 1, 1 ... A000012;
0, 1, 2, 3, 4, 5, 6 ... A001477;
0, 1, 3, 6, 10, 15, 21 ... A000217;
1, 2, 5, 11, 21, 36, 57 ... A050407;
1, 3, 8, 19, 40, 76, 133 ... ;
1, 4, 12, 31, 71, 147, 200 ... A027658;
Antidiagonal triangle (T(n,k)) begins as:
0;
0, 1;
0, 1, 0;
0, 1, 1, 0;
0, 1, 2, 1, 1;
0, 1, 3, 3, 2, 1;
0, 1, 4, 6, 5, 3, 1;
0, 1, 5, 10, 11, 8, 4, 2;
0, 1, 6, 15, 21, 19, 12, 6, 3;
-
A000930:= func< n | (&+[Binomial(n-2*j,j): j in [0..Floor(n/3)]]) >;
A144903:= func< n,k | k eq 0 select 0 else (&+[Binomial(n-k+j-2,j)*A000930(k-j-1) : j in [0..k-1]]) >;
[A144903(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 01 2022
-
A:= proc(n,k) coeftayl (x/ (1-x-x^3)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
-
(* First program *)
a[n_, k_] := SeriesCoefficient[x/((1-x-x^3)*(1-x)^(k-1)), {x, 0, n}];
Table[a[n-k, k], {n,0,12}, {k,n,0,-1}]//Flatten (* Jean-François Alcover, Jan 15 2014 *)
(* Second Program *)
A000930[n_]:= A000930[n]= Sum[Binomial[n-2*j,j], {j,0,Floor[n/3]}];
T[n_, k_]:= T[n, k]= If[k==0, 0, Sum[Binomial[n-k+j-2,j]*A000930[k-j-1], {j,0,k- 1}]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2022 *)
-
def A000930(n): return sum(binomial(n-2*j,j) for j in (0..(n//3)))
def A144903(n,k):
if (k==0): return 0
else: return sum(binomial(n-k+j-2,j)*A000930(k-j-1) for j in (0..k-1))
flatten([[A144903(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Aug 01 2022
A050228
a(n) is the number of subsequences {s(k)} of {1,2,3,...n} such that s(k+1)-s(k) is 1 or 3.
Original entry on oeis.org
1, 3, 6, 11, 19, 31, 49, 76, 116, 175, 262, 390, 578, 854, 1259, 1853, 2724, 4001, 5873, 8617, 12639, 18534, 27174, 39837, 58396, 85596, 125460, 183884, 269509, 394999, 578914, 848455, 1243487, 1822435, 2670925, 3914448, 5736920, 8407883
Offset: 1
- Chu, Hung Viet. "Various Sequences from Counting Subsets." Fib. Quart., 59:2 (May 2021), 150-157.
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hung Viet Chu, Various sequences from counting subsets, arXiv:2005.10081 [math.CO], 2020-2021.
- Z. Kasa, On scattered subword complexity, arXiv preprint arXiv:1104.4425 [cs.DM], 2011.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-2,1).
-
A050228:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+1, j+2): j in [0..Floor((n+1)/3)]]) >;
[A050228(n): n in [1..40]]; // G. C. Greubel, Jul 27 2022
-
with(combstruct): SubSetSeqU := [T, {T=Subst(U,U), S=Set(U, card>=3), U=Sequence(Z, card>=3)}, unlabeled]: seq(count(SubSetSeqU, size=n), n=9..46); # Zerinvary Lajos, Mar 18 2008
-
Rest[CoefficientList[Series[1/((1-x)^2*(1-x-x^3)), {x, 0, 50}], x]] (* G. C. Greubel, Apr 27 2017 *)
LinearRecurrence[{3,-3,2,-2,1},{1,3,6,11,19},50] (* Harvey P. Dale, Apr 21 2020 *)
-
my(x='x+O('x^50)); Vec(x/((1-x)^3-x^3*(1-x)^2)) \\ G. C. Greubel, Apr 27 2017
-
def A050228(n): return sum(binomial(n-2*j+1, j+2) for j in (0..((n+1)//3)))
[A050228(n) for n in (1..40)] # G. C. Greubel, Jul 27 2022
A098578
a(n) = Sum_{k=0..floor(n/4)} C(n-3*k,k+1).
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 49, 68, 94, 130, 180, 249, 344, 475, 656, 906, 1251, 1727, 2384, 3291, 4543, 6271, 8656, 11948, 16492, 22764, 31421, 43370, 59863, 82628, 114050, 157421, 217285, 299914, 413965, 571387, 788673, 1088588, 1502554
Offset: 0
-
I:=[0,1,2,3,4]; [n le 5 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4) - Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
-
CoefficientList[Series[x/((1-x)^2-x^4*(1-x)), {x,0,50}], x] (* or *) LinearRecurrence[{2,-1,0,1,-1}, {0,1,2,3,4}, 50] (* G. C. Greubel, Feb 03 2018 *)
-
x='x+O('x^30); concat([0], Vec(x/((1-x)^2-x^4*(1-x)))) \\ G. C. Greubel, Feb 03 2018
A144898
Expansion of x/((1-x-x^3)*(1-x)^4).
Original entry on oeis.org
0, 1, 5, 15, 36, 76, 147, 267, 463, 775, 1262, 2011, 3150, 4867, 7438, 11268, 16951, 25358, 37766, 56047, 82945, 122482, 180553, 265798, 390880, 574358, 843432, 1237966, 1816384, 2664311, 3907237, 5729077, 8399372, 12313154, 18049371, 26456513, 38778103
Offset: 0
-
A144898:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+3, j+4): j in [0..Floor((n+3)/3)]]) >;
[A144898(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(7, (i, j)-> if i=j-1 then 1 elif j=1 then [5, -10, 11, -9, 7, -4, 1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[ x/((1-x-x^3)(1-x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144898(n): return sum(binomial(n-2*j+3, j+4) for j in (0..((n+3)//3)))
[A144898(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A144899
Expansion of x/((1-x-x^3)*(1-x)^5).
Original entry on oeis.org
0, 1, 6, 21, 57, 133, 280, 547, 1010, 1785, 3047, 5058, 8208, 13075, 20513, 31781, 48732, 74090, 111856, 167903, 250848, 373330, 553883, 819681, 1210561, 1784919, 2628351, 3866317, 5682701, 8347012, 12254249, 17983326, 26382698, 38695852, 56745223, 83201736
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,21,-20,16,-11,5,-1).
-
A144899:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+4, j+5): j in [0..Floor((n+4)/3)]]) >;
[A144899(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(8, (i, j)-> if i=j-1 then 1 elif j=1 then [6, -15, 21, -20, 16, -11, 5, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
CoefficientList[Series[x/((1-x-x^3)(1-x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
-
def A144899(n): return sum(binomial(n-2*j+4, j+5) for j in (0..((n+4)//3)))
[A144899(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A226405
Expansion of x/((1-x-x^3)*(1-x)^3).
Original entry on oeis.org
0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0
Cf.
A000930,
A050228,
A077868,
A144898,
A144899,
A144900,
A144901,
A144902,
A144903,
A144904,
A226405.
-
A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
[A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
-
a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
-
LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40] (* Bruno Berselli, Jun 07 2013 *)
CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
-
def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
[A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022
A077941
Expansion of 1/(1-2*x+x^2+x^3).
Original entry on oeis.org
1, 2, 3, 3, 1, -4, -12, -21, -26, -19, 9, 63, 136, 200, 201, 66, -269, -805, -1407, -1740, -1268, 611, 4230, 9117, 13393, 13439, 4368, -18096, -53999, -94270, -116445, -84621, 41473, 284012, 611172, 896859, 898534, 289037, -1217319, -3622209, -6316136, -7792744, -5647143, 2814594
Offset: 0
Showing 1-10 of 12 results.
Comments