cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144965 a(n) = 4*n*(4*n^2 + 1).

Original entry on oeis.org

0, 20, 136, 444, 1040, 2020, 3480, 5516, 8224, 11700, 16040, 21340, 27696, 35204, 43960, 54060, 65600, 78676, 93384, 109820, 128080, 148260, 170456, 194764, 221280, 250100, 281320, 315036, 351344, 390340, 432120, 476780, 524416, 575124, 629000, 686140, 746640
Offset: 0

Views

Author

Luc Comeau-Montasse, Sep 27 2008

Keywords

Comments

(a(n))^2 + (n*a(n)+1)^2 is always a perfect square.

Crossrefs

Programs

  • Magma
    I:=[0, 20, 136, 444]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[4*x*(5+14*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,20,136,444},50] (* Harvey P. Dale, Aug 07 2022 *)

Formula

G.f.: 4*x*(5+14*x+5*x^2)/(1-x)^4. - Colin Barker, May 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: 4*x*(5 + 2*x)*(1 + 2*x)*exp(x).
a(n) = 4*A317297(n+1) = A008586(n)*A053755(n). (End)