cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Luc Comeau-Montasse

Luc Comeau-Montasse's wiki page.

Luc Comeau-Montasse has authored 8 sequences.

A214095 Position of integer n in the list of first n natural numbers written out in French and arranged in alphabetical order.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 4, 3, 4, 3, 6, 4, 11, 8, 10, 11, 4, 4, 5, 20, 21, 21, 23
Offset: 1

Author

Luc Comeau-Montasse, Jul 03 2012

Keywords

Examples

			We have a(14) = 8 because of the ordered list: cinq, deux, dix, douze, huit, neuf, onze, quatorze, quatre, sept, six, treize, trois, un.
		

Crossrefs

CF. A108017 (in English).

Programs

  • PARI
    lista() = {my(v = ["un", "deux", "trois", "quatre", "cinq", "six", "sept", "huit", "neuf", "dix", "onze", "douze", "treize", "quatorze", "quinze", "seize", "dix-sept", "dix-huit", "dix-neuf", "vingt"], vs); for (i=1, #v, vp = vector(i, k, v[k]); vs = vecsort(vp); for (k=1, #vp, if (vs[k] == v[i], print1(k, ", "); break);););} \\ Michel Marcus, Jan 03 2019

A210435 Number of digits in 5^n.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47
Offset: 0

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Examples

			a(4) = 3 because 5^4 = 625, which has 3 digits.
a(5) = 4 because 5^5 = 3125, which has 4 digits.
		

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), A210062 (b=7).

Programs

  • Magma
    [#Intseq(5^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
    
  • Maple
    a:= n-> length(5^n): seq(a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[5^n]], {n, 0, 67}] (* Bruno Berselli, Mar 22 2012 *)
    IntegerLength[5^Range[0,70]] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n) = #Str(5^n); \\ Michel Marcus, Oct 27 2015

Formula

a(n) = A055642(A000351(n)) = A055642(5^n) = floor(log_10(10*(5^n))). [Jonathan Vos Post, Mar 22 2012]
a(n) + A034887(n) = n+1. - Michel Marcus, Oct 27 2015

A210434 Number of digits in 4^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 41
Offset: 0

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Comments

Since log10(4) = A114493 ~ 0.60205 (= twice log10(2) = 0.30102999566...), the first 98 terms are equal to floor(n*3/5)+1. - M. F. Hasler, Mar 31 2025

Examples

			a(4) = 3 because 4^4 = 256, which has 3 digits.
a(5) = 4 because 4^5 = 1024, which has 4 digits.
		

Programs

  • Magma
    [#Intseq(4^n): n in [0..68]]; // Bruno Berselli, Mar 22 2012
    
  • Maple
    a:= n-> length(4^n): seq(a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[4^n]], {n, 0, 68}] (* Bruno Berselli, Mar 22 2012 *)
  • PARI
    apply( {A210434(n)=logint(4^n,10)+1}, [0..66]) \\ M. F. Hasler, Mar 31 2025
    
  • PARI
    a(n)=log(4)*n\log(10)+1 \\ correct up to n ~ 10^precision, with default precision = 38. - M. F. Hasler, Mar 31 2025
    
  • Python
    from math import log
    def A210434(n): return int(n*log(4,10))+1 if n<1e16 else "not enough precision" # M. F. Hasler, Mar 31 2025

Formula

a(n) = A055642(A000302(n)) = A055642(4^n) = floor(log_10(10*(4^n))). - Jonathan Vos Post, Mar 22 2012

A210436 Number of digits in 6^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53
Offset: 0

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Examples

			a(4) = 4 because 6^4 = 1296, which has 4 digits.
a(5) = 4 because 6^5 = 7776, which has 4 digits.
		

Programs

  • Magma
    [#Intseq(6^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
  • Maple
    a:= n-> length(6^n): seq (a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[6^n]], {n, 0, 99}] (* Alonso del Arte, Mar 22 2012 *)

Formula

a(n) = A055642(A000400(n)) = A055642(6^n) = floor(log_10(10*(6^n))). - Jonathan Vos Post, Mar 23 2012

A210062 Number of digits in 7^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57
Offset: 0

Author

Luc Comeau-Montasse, Mar 16 2012

Keywords

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), this sequence (b=7).

Programs

  • Magma
    [#Intseq(7^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[7^n]], {n, 0, 100}] (* T. D. Noe, Mar 20 2012 *)

Formula

a(n) = A055642(A000420(n)) = A055642(7^n) = floor(log_10(10*(7^n))). [Jonathan Vos Post, Mar 23 2012]

A166931 Numbers n with property that n mod k is k-1 for all k = 2..9.

Original entry on oeis.org

2519, 5039, 7559, 10079, 12599, 15119, 17639, 20159, 22679, 25199, 27719, 30239, 32759, 35279, 37799, 40319, 42839, 45359, 47879, 50399, 52919, 55439, 57959, 60479, 62999, 65519, 68039, 70559, 73079, 75599, 78119, 80639, 83159, 85679
Offset: 1

Author

Luc Comeau-Montasse, Oct 23 2009

Keywords

Programs

  • Maple
    isA166931 := proc(n) for k from 2 to 9 do if n mod k <> k-1 then return false; end if; end do; true; end proc: for n from 1 to 500000 do if isA166931(n) then printf("%d,",n) ; end if; end do ; # R. J. Mathar, Nov 02 2009
  • Mathematica
    Select[Range[90000],And@@Table[Mod[#,k]==k-1,{k,2,9}]&] (* Harvey P. Dale, Jun 14 2011 *)
    LinearRecurrence[{2, -1}, {2519, 5039}, 50] (* G. C. Greubel, May 28 2016 *)

Formula

a(n) = 2519 + n*2520.
From G. C. Greubel, May 28 2016: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (2519 + x)/(1-x)^2.
E.g.f.: (2519 + 2520*x)*exp(x). (End)

Extensions

Edited by N. J. A. Sloane, Oct 25 2009

A144965 a(n) = 4*n*(4*n^2 + 1).

Original entry on oeis.org

0, 20, 136, 444, 1040, 2020, 3480, 5516, 8224, 11700, 16040, 21340, 27696, 35204, 43960, 54060, 65600, 78676, 93384, 109820, 128080, 148260, 170456, 194764, 221280, 250100, 281320, 315036, 351344, 390340, 432120, 476780, 524416, 575124, 629000, 686140, 746640
Offset: 0

Author

Luc Comeau-Montasse, Sep 27 2008

Keywords

Comments

(a(n))^2 + (n*a(n)+1)^2 is always a perfect square.

Crossrefs

Programs

  • Magma
    I:=[0, 20, 136, 444]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[4*x*(5+14*x+5*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,20,136,444},50] (* Harvey P. Dale, Aug 07 2022 *)

Formula

G.f.: 4*x*(5+14*x+5*x^2)/(1-x)^4. - Colin Barker, May 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: 4*x*(5 + 2*x)*(1 + 2*x)*exp(x).
a(n) = 4*A317297(n+1) = A008586(n)*A053755(n). (End)

A131654 Difference mod 10 of successive digits of Pi.

Original entry on oeis.org

8, 3, 7, 4, 4, 3, 4, 9, 8, 2, 3, 1, 8, 2, 4, 9, 1, 5, 6, 2, 6, 4, 8, 9, 0, 5, 5, 9, 5, 2, 6, 5, 2, 6, 0, 6, 7, 8, 8, 4, 5, 3, 4, 6, 0, 4, 4, 8, 6, 9, 5, 3, 4, 8, 9, 8, 7, 5, 5, 0, 1, 4, 3, 1, 7, 7, 1, 3, 5, 8, 6, 6, 6, 6, 8, 6, 8, 8, 1, 0, 9, 8, 6, 6, 2, 3, 1, 4, 4, 3, 8, 1, 8, 9, 0, 6, 3, 6, 1, 2, 9, 4, 9, 3, 4
Offset: 0

Author

Luc Comeau-Montasse, Sep 10 2007

Keywords

Programs

  • Mathematica
    Mod[Differences[RealDigits[Pi,10,120][[1]]],10] (* Harvey P. Dale, Jul 28 2021 *)

Extensions

More terms from Robert G. Wilson v, Sep 14 2007