cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008565 Digits of powers of 4.

Original entry on oeis.org

1, 4, 1, 6, 6, 4, 2, 5, 6, 1, 0, 2, 4, 4, 0, 9, 6, 1, 6, 3, 8, 4, 6, 5, 5, 3, 6, 2, 6, 2, 1, 4, 4, 1, 0, 4, 8, 5, 7, 6, 4, 1, 9, 4, 3, 0, 4, 1, 6, 7, 7, 7, 2, 1, 6, 6, 7, 1, 0, 8, 8, 6, 4, 2, 6, 8, 4, 3, 5, 4, 5, 6, 1, 0, 7, 3, 7, 4, 1, 8, 2, 4, 4, 2, 9, 4, 9, 6, 7, 2, 9, 6, 1, 7, 1, 7, 9, 8, 6, 9, 1, 8, 4
Offset: 0

Views

Author

Keywords

Comments

Irregular table with row length sequence A210434. - Jason Kimberley, Nov 26 2012
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  4;
  1, 6;
  6, 4;
  2, 5, 6;
  1, 0, 2, 4;
  4, 0, 9, 6;
  1, 6, 3, 8, 4;
  6, 5, 5, 3, 6;
  2, 6, 2, 1, 4, 4;
  1, 0, 4, 8, 5, 7, 6;
  ...
		

Crossrefs

Cf. A000302 (powers of 4), A210434.
Last elements of rows give A168428.

Programs

  • Maple
    R:= 1: t:= 1: count:= 1:
    while count < 100 do
      t:= 4*t; L:= convert(t,base,10);
      count:= count+nops(L);
      R:= R, op(ListTools:-Reverse(L));
    od:
    R; # Robert Israel, May 05 2020
  • Mathematica
    Table[IntegerDigits[4^i],{i,0,17}]//Flatten (* Stefano Spezia, Aug 06 2024 *)

A210435 Number of digits in 5^n.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 47
Offset: 0

Views

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Examples

			a(4) = 3 because 5^4 = 625, which has 3 digits.
a(5) = 4 because 5^5 = 3125, which has 4 digits.
		

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), A210062 (b=7).

Programs

  • Magma
    [#Intseq(5^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
    
  • Maple
    a:= n-> length(5^n): seq(a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[5^n]], {n, 0, 67}] (* Bruno Berselli, Mar 22 2012 *)
    IntegerLength[5^Range[0,70]] (* Harvey P. Dale, Mar 26 2013 *)
  • PARI
    a(n) = #Str(5^n); \\ Michel Marcus, Oct 27 2015

Formula

a(n) = A055642(A000351(n)) = A055642(5^n) = floor(log_10(10*(5^n))). [Jonathan Vos Post, Mar 22 2012]
a(n) + A034887(n) = n+1. - Michel Marcus, Oct 27 2015

A210436 Number of digits in 6^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 36, 36, 37, 38, 39, 39, 40, 41, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53
Offset: 0

Views

Author

Luc Comeau-Montasse, Mar 21 2012

Keywords

Examples

			a(4) = 4 because 6^4 = 1296, which has 4 digits.
a(5) = 4 because 6^5 = 7776, which has 4 digits.
		

Crossrefs

Programs

  • Magma
    [#Intseq(6^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
  • Maple
    a:= n-> length(6^n): seq (a(n), n=0..100); # Alois P. Heinz, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[6^n]], {n, 0, 99}] (* Alonso del Arte, Mar 22 2012 *)

Formula

a(n) = A055642(A000400(n)) = A055642(6^n) = floor(log_10(10*(6^n))). - Jonathan Vos Post, Mar 23 2012

A210062 Number of digits in 7^n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 35, 36, 37, 38, 39, 39, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57
Offset: 0

Views

Author

Luc Comeau-Montasse, Mar 16 2012

Keywords

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), this sequence (b=7).

Programs

  • Magma
    [#Intseq(7^n): n in [0..67]]; // Bruno Berselli, Mar 22 2012
  • Mathematica
    Table[Length[IntegerDigits[7^n]], {n, 0, 100}] (* T. D. Noe, Mar 20 2012 *)

Formula

a(n) = A055642(A000420(n)) = A055642(7^n) = floor(log_10(10*(7^n))). [Jonathan Vos Post, Mar 23 2012]

A145875 Repdigit Kaprekar numbers.

Original entry on oeis.org

1, 9, 55, 99, 999, 7777, 9999, 22222, 99999, 999999, 4444444, 9999999, 88888888, 99999999, 999999999, 1111111111, 9999999999, 55555555555, 99999999999, 999999999999, 7777777777777, 9999999999999, 22222222222222, 99999999999999, 999999999999999, 4444444444444444, 9999999999999999, 88888888888888888, 99999999999999999
Offset: 1

Views

Author

Howard Berman (howard_berman(AT)hotmail.com), Oct 22 2008

Keywords

Comments

Kaprekar numbers (A006886) all of whose digits are equal. - N. J. A. Sloane, Mar 26 2025
The only numbers where the repeated digit and the number of digits are the same are 1, 88888888 and 999999999.
Conjectures from Daniel Mondot, Mar 28 2025: (Start)
The sequence a(n)%10 (i.e. the last (or any) digit of a(n)), is 15-periodic. the sequence would be : 1,9,5,9,9,7,9,2,9,9,4,9,8,9,9, repeating.
For n>15, a(n) can be constructed from a(n-15) by concatenating to it 9 times a digit of a(n-15). (End)
The above two conjectures are linked, they are easily proved using modular arithmetic, and correspond to the explicit formula given below. - M. F. Hasler, Mar 28 2025

Crossrefs

Intersection of A006886 (Kaprekar numbers) and A010785 (repdigits).
A382161 is a subsequence.
A subsequence of A382163 (palindromic Kaprekar numbers).
Cf. A002275 (repunits), A210434 (#digits(4^n), equals #digits(a(n+1)) for n < 98 but not beyond, due to log10(4) ~ 0.6).

Programs

  • PARI
    is_A145875(n)=is_A006886(n) && #Set(digits(n))==1 \\ M. F. Hasler, Mar 31 2025
    apply( {A145875(n)=10^(n--*3\5+1)\9*if(bittest(5, n%5),[1,5,7,2,4,8][n%15*2\/5+1],9)}, [1..29]) \\ M. F. Hasler, Mar 28 2025
    
  • PARI
    isk(k) = my(d=digits(k^2), nb=#d); if (nb%2, d=concat(0, d); nb++); fromdigits(Vec(d, nb/2)) + fromdigits(vector(nb/2, i, d[nb/2+i])) == k;
    lista(nn) = my(list=List()); for (i=1, nn, for (d=1, 9, my(x = fromdigits(vector(i, k, d))); if (isk(x), listput(list, x)););); Vec(list); \\ Michel Marcus, Mar 29 2025

Formula

a(n) = d(n) * R(floor(n*3/5+2/5)), where R(n) = (10^n-1)/9 = A002275(n) and d = (1, 9, 5, 9, 9; 7, 9, 2, 9, 9; 4, 9, 8, 9, 9) repeating, where ";" is used just to emphasize the 3 similar subgroups of length 5, with 2nd, 4th and 5th element equal to 9. - M. F. Hasler, Mar 28 2025
Length (= number of digits) of the n-th term is floor((n+2)*3/5). - M. F. Hasler, Mar 31 2025

Extensions

More terms from Gupta (2025) added by N. J. A. Sloane, Mar 26 2025

A348553 Number of digits in 11^n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2021

Keywords

Examples

			a(24) = 25 because 11^24 = 9849732675807611094711841, which has 25 digits.
a(25) = 27 because 11^25 = 108347059433883722041830251, which has 27 digits.
		

Crossrefs

Number of digits in b^n: A034887 (b=2), A034888 (b=3), A210434 (b=4), A210435 (b=5), A210436 (b=6), A210062 (b=7), this sequence (b=11).

Programs

  • Mathematica
    a[n_] := IntegerLength[11^n]; Array[a, 100, 0] (* Amiram Eldar, Oct 22 2021 *)
  • PARI
    a(n) = #Str(11^n);
    
  • Python
    def a(n): return len(str(11**n))
    print([a(n) for n in range(98)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) = A055642(A001020(n)) = A055642(11^n).

A125144 Increments in the number of decimal digits of 4^n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

This sequence is not periodic because log(4)/log(10) is an irrational number. - T. D. Noe, Jan 25 2007

Examples

			a(1)=1 because 4^(1+1)=16 (two digits) 4^1=4 (one digit) and the difference is 1.
a(2)=0 because 4^(2+1)=64 (two digits) 4^(2)=16 (two digits) and the difference is 0.
		

Crossrefs

First differences of A210434.

Programs

  • Maple
    P:=proc(n) local i,j,k,w,old; k:=4; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000);
    # alternative:
    H:= [seq(ilog10(4^i),i=1..1001)]:
    H[2..-1]-H[1..-2]; # Robert Israel, Jul 12 2018
  • Mathematica
    Differences[IntegerLength[4^Range[100]]] (* Paolo Xausa, Jun 08 2024 *)
  • PARI
    a(n) = #digits(4^(n+1)) - #digits(4^n); \\ Michel Marcus, Jul 12 2018

Formula

a(n)=Number_of_digits{4^(n+1)}-Number_of digits{4^(n)} with n>=0 and where "Number_of digits" is a hypothetical function giving the number of digits of the argument.

Extensions

Offset corrected by Robert Israel, Jul 11 2018
Showing 1-7 of 7 results.