A145033 T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|).
1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 14, 10, 1, 1, 9, 25, 30, 15, 1, 1, 11, 39, 65, 55, 21, 1, 1, 13, 56, 119, 140, 91, 28, 1, 1, 15, 76, 196, 294, 266, 140, 36, 1, 1, 17, 99, 300, 546, 630, 462, 204, 45, 1, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55, 1
Offset: 0
Examples
T(3,2) = 6 because there are exactly 6 amenable quasi-idempotent order-decreasing partial one-one transformations (on a 3- chain) of height 2, namely: (1,2)->(1,2), (1,3)->(1,2), (1,3)->(1,3), (2,3)->(1,3), (2,3)->(2,1), (2,3)->(2,3). 1; 1, 1; 1, 3, 1; 1, 5, 6, 1; 1, 7, 14, 10, 1; 1, 9, 25, 30, 15, 1; 1, 11, 39, 65, 55, 21, 1; 1, 13, 56, 119, 140, 91, 28, 1; 1, 15, 76, 196, 294, 266, 140, 36, 1; 1, 17, 99, 300, 546, 630, 462, 204, 45, 1; 1, 19, 125, 435, 930,1302,1218, 750, 285, 55, 1;
Links
- A. Umar, On the ranks of certain finite semigroups of order-decreasing transformations Portugaliae Math. 53, (1996), 23-34.
Crossrefs
Row sums of T(n, k) is A005183.
Programs
-
PARI
T(n,k) = binomial(n,k)*((n-k)*(k+1)+1)/(n-k+1); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 23 2018
Formula
T(n,k) = C(n,k)*((n-k)*(k+1)+1)/(n-k+1), (n>=k>=0).
Extensions
More terms from Jinyuan Wang, Feb 26 2020
Comments