A145040 Primes p such that 2^p-1 is prime and congruent to 31 mod 5!.
5, 13, 17, 61, 89, 521, 2281, 3217, 4253, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 132049, 859433, 1398269, 2976221, 3021377, 6972593, 13466917, 30402457, 32582657, 42643801, 43112609, 57885161
Offset: 1
Links
- Chris K. Caldwell, The largest known primes. - _R. J. Mathar_, Jul 31 2009
Programs
-
Mathematica
p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 5! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 120] == 32 &] (* Amiram Eldar, Oct 19 2024 *)
-
PARI
isok(p) = isprime(p) && isprime(q=2^p-1) && ((q % 120)==31); \\ Michel Marcus, Jan 06 2018
Formula
a(n) = A112634(n+1). - Jeppe Stig Nielsen, Jan 02 2018
Extensions
42643801 inserted by R. J. Mathar, Jul 31 2009
a(28) from Amiram Eldar, Oct 19 2024
Comments