cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145074 Coefficient of x^(4^n) in Q(x)^(n+1) where Q(x) = Sum_{k>=0} (x^(4^k) + x^(2*4^k) + x^(3*4^k)).

Original entry on oeis.org

1, 3, 12, 97, 885, 10386, 141295, 2218987, 39171564, 770029605, 16652860169, 393052609026, 10051000032099, 276818387211471, 8168772682637220, 257133140827399753
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n,q=4)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}

Extensions

a(8)-a(10) from Sean A. Irvine, Mar 31 2011
a(11)-a(15) from Max Alekseyev, Dec 19 2011

A145075 Coefficient of x^(5^n) in Q(x)^(n+1), where Q(x) = Sum_{k>=0} (x^(5^k) + x^(2*5^k) + x^(3*5^k) + x^(4*5^k)).

Original entry on oeis.org

1, 4, 18, 172, 1881, 25644, 411488, 7581792, 157296141, 3630709734, 92225760033, 2556393882912, 76774488792326, 2483261807354874
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n,q=5)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}

Extensions

a(7)-a(13) from Max Alekseyev, Dec 19 2011

A145076 Coefficient of x^(6^n) in Q(x)^(n+1), where Q(x) = Sum_{k>=0} x^(6^k)*(1 - x^(5*6^k))/(1 - x^(6^k)).

Original entry on oeis.org

1, 5, 25, 270, 3430, 52996, 968905, 20342540, 480982030, 12646108250, 365943140101, 11555148366323, 395323293564108
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2008

Keywords

Crossrefs

Programs

  • Maple
    Q:=proc(x,n) options operator, arrow: sum(x^(6^k)+x^(2*6^k)+x^(3*6^k)+x^(4*6^k)+x^(5*6^k),k=0..n) end proc: seq(coeff(Q(x,n)^(n+1),x,6^n),n=0..6); # Emeric Deutsch, Oct 20 2008
  • PARI
    {a(n,q=6)=local(Q=sum(j=0,n,(x^(q^j)-x^(q*q^j))/(1-x^(q^j)+O(x^(q^n+1)))));polcoeff(Q^(n+1),q^n)}

Extensions

a(6) from Emeric Deutsch, Oct 20 2008
a(7)-a(12) from Max Alekseyev, Dec 19 2011
Showing 1-3 of 3 results.