cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145134 Expansion of x/((1 - x - x^4)*(1 - x)^5).

Original entry on oeis.org

0, 1, 6, 21, 56, 127, 259, 490, 876, 1498, 2472, 3963, 6204, 9522, 14374, 21397, 31477, 45844, 66203, 94915, 135247, 191717, 270570, 380435, 533232, 745424, 1039745, 1447585, 2012282, 2793666, 3874331, 5368292, 7432934, 10285505, 14225881, 19667988, 27183173
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2008

Keywords

Comments

The coefficients of the recursion for a(n) are given by the 6th row of A145152.

Crossrefs

6th column of A145153. Cf. A145152.

Programs

  • Maple
    col:= proc(k) local l, j, M, n; l:= `if` (k=0, [1, 0, 0, 1], [seq (coeff ( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix (nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if` (k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(6): seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[x / ((1 - x - x^4) (1 - x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{6,-15,20,-14,1,9,-10,5,-1},{0,1,6,21,56,127,259,490,876},40] (* Harvey P. Dale, Aug 14 2013 *)
  • PARI
    concat(0,Vec(1/(1-x-x^4)/(1-x)^5+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = 6a(n-1) -15a(n-2) +20a(n-3) -14a(n-4) +a(n-5) +9a(n-6) -10a(n-7) +5a(n-8) -a(n-9).