A145222 a(n) is the number of odd permutations (of an n-set) with exactly 1 fixed point.
0, 0, 3, 0, 30, 120, 945, 7392, 66780, 667440, 7342335, 88107360, 1145396538, 16035550440, 240533257965, 3848532125760, 65425046139960, 1177650830516832, 22375365779822715, 447507315596450880, 9397653627525472470, 206748379805560389720, 4755212735527888968873
Offset: 1
Keywords
Examples
a(3) = 3 because there are exactly 3 odd permutations (of a 3-set) having 1 fixed point, namely: (12), (13), (23).
Links
- Paolo Xausa, Table of n, a(n) for n = 1..400
- Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
Crossrefs
Programs
-
Mathematica
A145222[n_] := n*Subfactorial[n - 3]*Binomial[n - 1, 2]; Array[A145222, 25] (* Paolo Xausa, Jan 31 2025 *)
-
PARI
x = 'x + O('x^30); Vec(serlaplace(((x^3)*exp(-x))/(2*(1-x)))) \\ Michel Marcus, Apr 04 2016
Formula
E.g.f.: x^3*exp(-x)/(2*(1-x)).
D-finite with recurrence (-n+3)*a(n) +n*(n-4)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
Extensions
More terms from Alois P. Heinz, Apr 04 2016