A145324 Triangle read by rows: coefficients of 1; 1(X+2); 1(X+2)(X+3); 1(X+2)(X+3)(X+4); ....
1, 1, 2, 1, 5, 6, 1, 9, 26, 24, 1, 14, 71, 154, 120, 1, 20, 155, 580, 1044, 720, 1, 27, 295, 1665, 5104, 8028, 5040, 1, 35, 511, 4025, 18424, 48860, 69264, 40320, 1, 44, 826, 8624, 54649, 214676, 509004, 663696, 362880, 1, 54, 1266, 16884, 140889, 761166
Offset: 1
Examples
From _Wolfdieter Lang_, Oct 24 2011: (Start) n\k 1 2 3 4 5 6 7 ... 1: 1 2: 1 2 3: 1 5 6 4: 1 9 26 24 5: 1 14 71 154 120 6: 1 20 155 580 1044 720 7: 1 27 295 1665 5104 8028 5040 ... T(4,3)= 26 = |s(5,3)| - |s(5,4)| + |s(5,5)| = 35 - 10 + 1. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- Olivier Bodini, Antoine Genitrini, Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
Programs
-
Maple
A145324 := proc(n,k) coeftayl( 1*mul(x+i,i=2..n),x=0,n-k) ; end: for n from 1 to 11 do for k from 1 to n do printf("%d,",A145324(n,k)) ; od: od: # R. J. Mathar, Oct 10 2008
-
Mathematica
Table[Reverse[CoefficientList[Product[x+j, {j, 2, k}], x]], {k, 1, 15}] // Flatten (* Robert A. Russell, Sep 29 2018 *)
Formula
T(n,k) = A143491(n+1,n+2-k). - R. J. Mathar, Oct 10 2008
T(n,k) = Sum_{m=0..k-1} (-1)^m*|s(n+1, n+2-k+m)|, n >= 1, k = 1..n, with the Stirling numbers of the first kind s(n,k) = A048994(n,k). - Wolfdieter Lang, Oct 24 2011
T(n,k) = T(n-1,k)+n*T(n-1,k-1). - Mikhail Kurkov, Jun 26 2018
Extensions
More terms from R. J. Mathar, Oct 10 2008
Comments