cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145397 Numbers not of the form m*(m+1)*(m+2)/6, the non-tetrahedral numbers.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 14 2008

Keywords

Comments

Complement of A000292; A000040 is a subsequence.

Crossrefs

Programs

  • Magma
    [n: n in [1..100] | Binomial(Floor((6*n-1)^(1/3))+2, 3) ne n ]; // G. C. Greubel, Feb 20 2022
    
  • Mathematica
    Select[Range[100], Binomial[Floor[Surd[6*# -1, 3]] +2, 3] != # &] (* G. C. Greubel, Feb 20 2022 *)
  • PARI
    is(n)=binomial(sqrtnint(6*n,3)+2,3)!=n \\ Charles R Greathouse IV, Feb 22 2017
    
  • Python
    from itertools import count
    from math import comb
    from sympy import integer_nthroot
    def A145397(n):
        def f(x): return n+next(i for i in count(integer_nthroot(6*x,3)[0],-1) if comb(i+2,3)<=x)
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        return iterfun(f,n) # Chai Wah Wu, Sep 09 2024
    
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A145397(n): return n+(m:=integer_nthroot(6*n,3)[0])-(n+m<=comb(m+2,3)) # Chai Wah Wu, Oct 01 2024
  • Sage
    [n for n in (1..100) if binomial( floor( real_nth_root(6*n-1, 3) ) +2, 3) != n ] # G. C. Greubel, Feb 20 2022
    

Formula

A014306(a(n)) = 1; A023533(a(n)) = 0.
a(n) = n+m if 6(n+m)>m(m+1)(m+2) and a(n)=n+m-1 otherwise where m is floor((6n)^(1/3)). - Chai Wah Wu, Oct 01 2024

Extensions

Definition corrected by Ant King, Sep 20 2012