A145451 a(n) = (1/2) * ((1 + sqrt(2))^(3^n) + (1 - sqrt(2))^(3^n)).
1, 7, 1393, 10812186007, 5055923762956339922096065927393, 516965476521645313412793919264355659075150020437514670946599534039092755401282583412315252007
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..7
- Wikipedia, Halley's method
Programs
-
Magma
[Evaluate(DicksonFirst(3^n, -1), 2)/2: n in [0..7]]; // G. C. Greubel, Sep 27 2018; Mar 25 2022
-
Mathematica
Table[Simplify[Expand[(1/2) ((1 + Sqrt[2])^(3^n) + (1 - Sqrt[2])^(3^n))]], {n, 0, 5}] a = {}; k = 1; Do[AppendTo[a, k]; k = 4 k^3 + 3 k, {n, 1, 6}]; a NestList[4#^3+3#&,1,5] (* Harvey P. Dale, May 31 2019 *) LucasL[3^Range[0, 7], 2]/2 (* G. C. Greubel, Mar 25 2022 *)
-
PARI
A002203(n) = my(w=quadgen(8)); (1+w)^n + (1-w)^n; vector(7, n, n--; A002203(3^n)/2 ) \\ G. C. Greubel, Sep 27 2018; Mar 25 2022
-
Sage
[lucas_number2(3^n,2,-1)/2 for n in (0..7)] # G. C. Greubel, Mar 25 2022
Formula
a(n) = (1/2) * ((1 + sqrt(2))^(3^n) + (1 - sqrt(2))^(3^n)).
a(n+1) = 4*a(n)^3 + 3*a(n), a(0)=1.
a(n) = A006266(n)/2.
a(n) = A001333(3^n). - R. J. Mathar, Jan 18 2021
Comments