A145502 a(n+1) = a(n)^2+2*a(n)-2 and a(1)=2.
2, 6, 46, 2206, 4870846, 23725150497406, 562882766124611619513723646, 316837008400094222150776738483768236006420971486980606
Offset: 1
Links
- Peter Bala, Notes on A145502-A145510.
- Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
- Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
Crossrefs
Programs
-
Mathematica
aa = {}; k = 2; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa (* or *) k = 1; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}] NestList[#^2+2#-2&,2,10] (* Harvey P. Dale, Dec 14 2021 *)
Formula
From Peter Bala, Nov 12 2012: (Start)
a(n) = phi^(2^n) + (1/phi)^(2^n) - 1, where phi := (1 + sqrt(5))/2 is the golden ratio.
a(n) = A001566(n-1) - 1.
Recurrence: a(n) = 4*(Product_{k = 1..n-1} a(k)) - 2 with a(1) = 2.
Product_{n >= 1} (1 + 1/a(n)) = 4/sqrt(5).
Product_{n >= 1} (1 + 2/(a(n) + 1)) = sqrt(5). (End)
From Amiram Eldar, Sep 10 2022: (Start)
a(n) = A000324(n) - 3.
Sum_{n>=1} (-2)^n/a(n) = -1/2 (Duverney, 2001). (End)
Product_{n>=1} (1 + 3/a(n)) = 4 (Duverney and Kurosawa, 2022). - Amiram Eldar, Jan 07 2023
Comments