A145534 a(n) is the number of numbers removed in each step of Eratosthenes's sieve for 7!.
2519, 839, 335, 191, 104, 79, 57, 49, 39, 31, 27, 21, 18, 17, 14, 9, 7, 5, 3
Offset: 1
Programs
-
Maple
A145534 := {$(1..7!)}: for n from 1 do p:=ithprime(n): r:=0: lim:=7!/p: for k from 2 to lim do if(member(k*p,A145534))then r:=r+1: fi: A145534 := A145534 minus {k*p}: od: printf("%d, ", r): if(r=0)then break: fi: od: # Nathaniel Johnston, Jun 23 2011
-
Mathematica
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 7; kk = PrimePi[Sqrt[nn! ]]; t3 = f3[nn!, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
Comments