cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A145542 Numerators in continued fraction expansion of sqrt(3/5).

Original entry on oeis.org

1, 3, 7, 24, 55, 189, 433, 1488, 3409, 11715, 26839, 92232, 211303, 726141, 1663585, 5716896, 13097377, 45009027, 103115431, 354355320, 811826071, 2789833533, 6391493137, 21964312944, 50320119025, 172924670019, 396169459063, 1361433047208, 3119035553479
Offset: 1

Views

Author

Gary W. Adamson, Oct 12 2008

Keywords

Comments

a(n)/A145543(n) tends to sqrt(3/5).
A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Related to the Lehmer sequence U_n(sqrt(R),Q) with parameters R = 6 and Q = -1. See A041023. - Peter Bala, Jun 06 2014

Examples

			[a(7), a(8)] = [433, 1488] X^4 * [1, 0] = [433, 1488].
a(5) = 55 = 2*a(4) + a(3) = 2*24 + 7.
G.f. = x + 3*x^2 + 7*x^3 + 24*x^4 + 55*x^5 + 189*x^6 + 433*x^7 + 1488*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[3/5], 30]] (* gives terms with 0 prepended *) (* Wesley Ivan Hurt, Jun 15 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( x * (1 + 3*x - x^2) / (1 - 8*x^2 + x^4) + x * O(x^n), n))}; /* Michael Somos, Nov 14 2015 */

Formula

Numerators in continued fraction expansion of sqrt(3/5); i.e., of [1, 3, 2, 3, 2, 3, 2, 3, 2, ...].
[a(2*n - 1), a(2*n)] = X^n * [1,0], where X is the 2 X 2 matrix [1,2; 3,7].
Empirical G.f.: x*(1+3*x-x^2)/(1-8*x^2+x^4). - Colin Barker, Jan 04 2012
From Peter Bala, Jun 06 2014: (Start)
a(2*n + 1) = Product_{k=1..n} (6 + 4*cos^2(k*Pi/(2*n+1))).
a(2*n) = 3*Product_{k=1..n-1} (6 + 4*cos^2(k*Pi/(2*n))).
a(2*n + 1) = A070997(n); a(2*n) = 3*A001090(n). (End)

Extensions

More terms from Wesley Ivan Hurt, Jun 15 2014
Showing 1-1 of 1 results.