A145582 Number of isomorphism classes of rank one toric log del Pezzo surfaces with index L = n.
5, 7, 18, 13, 33, 26, 45, 27, 51, 51, 67, 53, 69, 74, 133, 48, 89, 81, 102, 110, 178, 105, 124, 109, 161, 119, 164, 135, 142, 187, 140, 105, 274, 159, 383, 169, 145, 166, 329, 221, 177, 266, 180, 230, 404, 189, 220, 213, 315, 264, 384, 233, 225, 260, 573, 298
Offset: 1
Keywords
Links
- Justus Springer, Table of n, a(n) for n = 1..5000
- Andreas Bäuerle, Sharp volume and multiplicity bounds for Fano simplices, arXiv:2308.12719 [math.CO], 2023.
- Andreas Bäuerle, Classification of Fano simplices
- Daniel Haettig, Beatrice Hafner, Juergen Hausen and Justus Springer, Del Pezzo surfaces of Picard number one admitting a torus action, arXiv:2207.14790 [math.AG], 2022. [see Proposition 7.1, p. 27]
- Daniel Hättig, Jürgen Hausen, Justus Springer and Hendrik Süß, Log del Pezzo surfaces with torus action - a searchable database
- Alexander M. Kasprzyk, Maximilian Kreuzer and Benjamin Nill, On the combinatorial classification of toric log del Pezzo surfaces, LMS J. Comput. Math. 13 (2010) 33-46; arXiv:0810.2207 [math.AG], 2008.
- Alexander M. Kasprzyk and Benjamin Nill, Chapter 17 Fano polytopes, in: Strings, Gauge Fields, And The Geometry Behind, World Scientific, 2012. See p. 359.
Extensions
a(17) from Kasprzyk and Nill (2012) added by Andrey Zabolotskiy, Feb 17 2020
a(18)-a(200) from Haettig, Hafner, Hausen and Springer (2022) added by Justus Springer, Aug 04 2023
a(201)-a(1000) from Bäuerle's data, added by Andrey Zabolotskiy, Oct 01 2023
a(1001)-a(5000) computed using Bäuerle's algorithm, added by Justus Springer, Apr 15 2024
Comments