cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145598 Triangular array of generalized Narayana numbers: T(n, k) = 4*binomial(n+1, k+3)*binomial(n+1, k-1)/(n+1).

Original entry on oeis.org

1, 4, 4, 10, 24, 10, 20, 84, 84, 20, 35, 224, 392, 224, 35, 56, 504, 1344, 1344, 504, 56, 84, 1008, 3780, 5760, 3780, 1008, 84, 120, 1848, 9240, 19800, 19800, 9240, 1848, 120, 165, 3168, 20328, 58080, 81675, 58080, 20328, 3168, 165, 220, 5148, 41184, 151008
Offset: 3

Views

Author

Peter Bala, Oct 15 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps, each step in the direction either up (U), down (D), right (R) or left (L), starting from (0,0) and finishing at lattice points on the horizontal line y = 3 and which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 3 of the generalized Narayana numbers N_r(n,k) := (r + 1)/(n + 1)*binomial(n + 1,k + r)*binomial(n + 1,k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with an offset of 0 in the row numbering). For other cases see A145596 (r = 1), A145597 (r = 2) and A145599 (r = 4).

Examples

			Triangle starts
  n\k|  1     2     3     4     5     6
  =====================================
   3 |  1
   4 |  4     4
   5 | 10    24    10
   6 | 20    84    84    20
   7 | 35   224   392   224    35
   8 | 56   504  1344  1344   504    56
  ...
Row 5: T(5,3) = 10: the 10 walks of length 5 from (0,0) to (2,3) are UUURR, UURUR, UURRU, URUUR, URURU, URRUU, RUUUR, RUURU, RURUU and RRUUU.
*
*......*......*......y......*......*......*
.
.
*.....10......*.....24......*.....10......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......*......*......*......*
.
.
*......*......*......o......*......*......* x axis
.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1):
    for n from 3 to 12 do seq(T(n, k), k = 1 .. n-2) end do;

Formula

T(n,k) = 4/(n+1)*binomial(n+1,k+3)*binomial(n+1,k-1) for n >=3 and 1 <= k <= n-2. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n + 1,3). Row sums A003518.
O.g.f. for column k+2: 4/(k + 1) * y^(k+4)/(1 - y)^(k+6) * Jacobi_P(k,4,1,(1 + y)/(1 - y)).
Identities for row polynomials R_n(x) = Sum_{k = 1 .. n - 2} T(n,k)*x^k:
x^3*R_(n-1)(x) = 4*(n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)*(n + 4)) * Sum_{k = 0..n} binomial(n + 4,k) * binomial(2n - k,n) * (x - 1)^k;
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n-1) = A003518(n)*x^(n-1).
Row generating polynomial R_(n+3)(x) = 4/(n+4)*x*(1-x)^n * Jacobi_P(n,4,4,(1+x)/(1-x)). - Peter Bala, Oct 31 2008
G.f.: A(x) = x*A145596(x)^2. - Vladimir Kruchinin, Oct 09 2020