cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145609 Numerator of the polynomial A_l(x) = sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=1.

Original entry on oeis.org

3, 25, 49, 761, 7381, 86021, 1171733, 2436559, 14274301, 55835135, 19093197, 1347822955, 34395742267, 315404588903, 9304682830147, 586061125622639, 54062195834749, 54801925434709, 2053580969474233, 2078178381193813
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

The polynomials A_{2n+1}(x) = sum_{d=1..2n} x^(2n+1-d)/d for small n look as follows:
n=1, index = 3: A_3(x) = x/2 + x^2.
n=2, index = 5: A_5(x) = x/4 + x^2/3 + x^3/2 + x^4.
n=3, index = 7: A_7(x) = x/6 + x^2/5 + x^3/4 + x^4/3 + x^5/2 + x^6.
n=4, index = 9: A_9(x) = x/8 + x^2/7 + x^3/6 + x^4/5 + x^5/4 + x^6/3 + x^7/2 + x^8.

Crossrefs

For denominators see A145610.

Programs

  • Maple
    A := proc(l,x) add(x^(l-d)/d,d=1..l-1) ; end: A145609 := proc(n) numer( A(2*n+1,1)) ; end: seq(A145609(n),n=1..20) ; # R. J. Mathar, Aug 21 2009
  • Mathematica
    m = 1; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Numerator[k]], {r, 1, 25}]; aa (* Artur Jasinski *)

Formula

(1/(2*n+1))*2F1(1, 2*n+1; 2*n+2; 1/m) = Sum_{x>=0} m^(-x)/(x+2n+1) = m^(2n)*arctanh((2m-1)/(2m^2-2m+1)) - A_{2n+1}(m) = m^(2n)*log(m/(m-1)) - A_{2n+1}(m). - Artur Jasinski, Oct 14 2008
It appears that A145609(n)/A145610(n) = H(2*n+2), the harmonic number of order 2*n+2. - Groux Roland, Jan 08 2011
Yes, A145609(n)/A145610(n) = H(2*n+2), as A_l(x) = sum_{d=1..l-1} x^(l-d)/d at x=1 is just sum_{d=1..l-1}1/d = H(l-1), the harmonic number of order (l-1). - Zak Seidov, Jan 09 2014
a(n) = numerator of Integral_{x=0..1} (1 - x^(2*n))/(1 - x). - Peter Luschny, Sep 28 2017

Extensions

Edited, parentheses in front of Gauss. Hypg. Fct. added by R. J. Mathar, Aug 21 2009

A145612 Denominator of the polynomial A_l(x) = Sum_{d=1..l-1} x^(l-d)/d for index l=2n+1 evaluated at x=2.

Original entry on oeis.org

1, 6, 15, 420, 63, 1386, 9009, 360360, 1531530, 29099070, 14549535, 1338557220, 1673196525, 10039179150, 145568097675, 72201776446800, 18050444111700, 9025222055850, 166966608033225, 667866432132900, 6845630929362225
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2008

Keywords

Comments

For numerators see A145611. For general properties of A_l(x) see A145609.

Crossrefs

Programs

  • Maple
    A := proc(l,x) add(x^(l-d)/d,d=1..l-1) ; end: A145612 := proc(n) denom( A(2*n+1,2)) ; end: seq(A145612(n),n=1..20) ; # R. J. Mathar, Aug 21 2009
  • Mathematica
    m = 2; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; AppendTo[aa, Denominator[k]], {r, 1, 30}]; aa (* Artur Jasinski *)

Extensions

Edited by R. J. Mathar, Aug 21 2009
Showing 1-2 of 2 results.