cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145718 Numbers x such that there exists n in N with (x+127)^3-x^3=n^2.

Original entry on oeis.org

762, 1676527, 3403477826, 6909058439031, 14025385227883882, 28471525103545970207, 57797181934813091765106, 117328250856145472737323751, 238176291440793374843675578202, 483497754296559694787188686555087, 981500203045724739624618190031377186
Offset: 1

Views

Author

Richard Choulet, Oct 16 2008

Keywords

Examples

			a(1)=762 because the first relation is (762+127)^3-762^3=16129^2.
		

Crossrefs

Cf. A145720.

Programs

  • Magma
    I:=[762,1676527]; [n le 2 select I[n] else 2030*Self(n-1)-Self(n-2)+128778: n in [1..20]]; // Vincenzo Librandi, Oct 18 2014
  • Mathematica
    CoefficientList[Series[127 (7 x^2 - 1015 x - 6)/((x - 1) (x^2 - 2030 x + 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Oct 18 2014 *)
  • PARI
    Vec(127*x*(7*x^2-1015*x-6)/((x-1)*(x^2-2030*x+1)) + O(x^20)) \\ Colin Barker, Oct 18 2014
    

Formula

a(n+2) = 2030*a(n+1)-a(n)+128778.
a(n) = 127*A145720(n). - Colin Barker, Oct 18 2014
G.f.: 127*x*(7*x^2-1015*x-6) / ((x-1)*(x^2-2030*x+1)). - Colin Barker, Oct 18 2014

Extensions

Editing and more terms from Colin Barker, Oct 18 2014

A274971 Numbers k such that (x+1)^3 - x^3 = k*y^2 has integer solutions.

Original entry on oeis.org

1, 7, 19, 31, 37, 43, 61, 67, 79, 91, 103, 127, 139, 151, 157, 163, 169, 199, 211, 217, 223, 247, 271, 283, 307, 313, 331, 343, 349, 367, 373, 379, 397, 403, 427, 439, 463, 469, 487, 499, 511, 523, 547, 553, 571, 577, 607, 613, 619, 631, 643, 661, 679, 691
Offset: 1

Views

Author

Colin Barker, Jul 13 2016

Keywords

Examples

			7 is in the sequence because, for instance, (167^3-166^3)/7 = 11881 = 109^2.
		

Crossrefs

Cf. A001921 (k=1), A144929 (k=7), A145124 (k=19), A145323 (k=31), A145700 (k=37), A145336 (k=43), A274972 (k=61), A145212 (k=67), A145309 (k=79), A145530 (k=91), A147530 (k=103), A145720 (k=127).
Cf. A003215 is a subsequence; A004611 contains this sequence.

Programs

  • Mathematica
    A004611=Select[Range[500],And@@(Mod[#,3]==1&)/@(First/@FactorInteger[#])&]; Select[A004611,Reduce[x^2+3== 12*#*y^2,{x,y},Integers]=!=False &] (* Ray Chandler, Jul 24 2016 *)

Extensions

More terms using solver at Alpern link by Ray Chandler, Jul 23 2016
Showing 1-2 of 2 results.