A145737 a(n) = square part of A145609(n).
1, 5, 7, 1, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163
Offset: 1
Keywords
Programs
-
Maple
seq(denom(n!*3*n*(n+1)/(2*(2*n+1))), n=1..81); # Gary Detlefs, Oct 18 2011
-
Mathematica
m = 1; aa = {}; Do[k = 0; Do[k = k + m^(2 r + 1 - d)/d, {d, 1, 2 r}]; b = Sqrt[Numerator[k]] /. Sqrt[] -> 1; AppendTo[aa, b], {r, 1, 137}]; aa (* _Artur Jasinski *)
-
Python
from sympy import isprime def A145737(n): return a if isprime(a:=(n<<1)+1) and n>1 else 1 # Chai Wah Wu, Feb 26 2024
Formula
a(n) = 2n+1 if 2n+1 is prime, 1 otherwise, for n > 1.
From Gary Detlefs, Oct 18 2011: (Start)
a(n) = Denominator(n!*(Sum_{k=1..n} k^3)/(Sum_{k=1..n} k^2))
= Denominator(n!*3*n*(n+1)/(2*(2*n+1))). (End)
Comments