cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128059 a(n) = numerator((2*n-1)^2/(2*(2*n)!)).

Original entry on oeis.org

1, 1, 3, 5, 7, 1, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

1's between primes correspond to odd nonprimes (see A047846).

Crossrefs

Essentially the odd bisection of A089026.

Programs

  • Haskell
    a128059 0 = 1
    a128059 n = f n n where
       f 1 _ = 1
       f x q = if a010051' q' == 1 then q' else f x' q'
               where x' = x - 1; q' = q + x'
    -- Reinhard Zumkeller, Jun 14 2015
    
  • Maple
    A128059 := proc(n): numer(((2*n-1)^2)/(2*(2*n)!)) end: seq(A128059(n), n=0..64); # Artur Jasinski, Nov 29 2008
    A128059 := proc(n): if isprime(2*n-1) then 2*n-1 else 1 fi: end: seq(A128059(n), n=0..64); # Johannes W. Meijer, Oct 25 2012, Jun 01 2016
  • Mathematica
    Table[Numerator[(2 n - 1)^2/(2 (2 n)!)], {n, 0, 64}] (* Michael De Vlieger, Jun 01 2016 *)
  • Python
    from sympy import isprime
    def A128059(n): return a if isprime(a:=(n<<1)-1) else 1 # Chai Wah Wu, Feb 26 2024

Formula

Conjecture: a(n) = denominator(f(n-1)) with f(n) = lcm(2,3,4,5,...,n)*(Sum_{k=0..n} frac(Bernoulli(2*k))*binomial(n+k,k)). - Yalcin Aktar, Jul 23 2008
a(n) = 2*n-3 if 2*n-3 is prime and a(n) = 1 otherwise. a(n+4) = A145737(n+2), for n >= 1. - Artur Jasinski, Nov 29 2008
a(n+1) = denominator( (2n)!/(2n+1) ), n > 0. - Wesley Ivan Hurt, Jun 19 2013
a(n+1) = abs(2n*(pi(2n) - pi(2n-2)) - 1) where abs is the absolute value function and pi is the prime counting function (A000720). - Anthony Browne, Jun 28 2016
a(n+1) = denominator(Bernoulli(2*n)*(2*n)!) = numerator(Clausen(2*n,1)/(2*n)!) with Clausen defined in A160014. - Peter Luschny, Sep 25 2016

A356360 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).

Original entry on oeis.org

5, 7, 3, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163, 1, 167
Offset: 3

Views

Author

Mohammed Bouras, Oct 15 2022

Keywords

Comments

Conjecture: The sequence contains only 1's and the primes.
Similar continued fraction to A356247.
Same as A128059(n), A145737(n-1) and A097302(n-2) for n > 5.
a(n) = 1 positions appear to correspond to A104275(m), m > 2. Conjecture: all odd primes are seen in order after 11. - Bill McEachen, Aug 05 2024

Crossrefs

Programs

  • Python
    from math import gcd, factorial
    def A356360(n): return (a:=(n<<1)-1)//gcd(a, a*sum(factorial(k) for k in range(n-2))+n*factorial(n-2)>>1) # Chai Wah Wu, Feb 26 2024

Formula

For n >= 3, the formula of the continued fraction is as follows:
(A051403(n-2) + A051403(n-3))/(2n - 1) = 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).
a(n) = (2n - 1)/gcd(2n - 1, A051403(n-2) + A051403(n-3)).
From the conjecture: Except for n = 5, a(n)= 2n - 1 if 2n-1 is prime, 1 otherwise.

A145738 a(n) = squarefree part of A145609(n).

Original entry on oeis.org

3, 1, 1, 761, 61, 509, 1171733, 8431, 39541, 55835135, 36093, 1347822955, 34395742267, 375035183, 9682292227, 586061125622639, 54062195834749, 40030624861, 2053580969474233, 1236275063173, 6657281227331
Offset: 1

Views

Author

Artur Jasinski, Oct 17 2008

Keywords

Crossrefs

Cf. A128059, A145609, A145738, A145737 (for square parts).

Programs

Showing 1-3 of 3 results.