cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A356360 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).

Original entry on oeis.org

5, 7, 3, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163, 1, 167
Offset: 3

Views

Author

Mohammed Bouras, Oct 15 2022

Keywords

Comments

Conjecture: The sequence contains only 1's and the primes.
Similar continued fraction to A356247.
Same as A128059(n), A145737(n-1) and A097302(n-2) for n > 5.
a(n) = 1 positions appear to correspond to A104275(m), m > 2. Conjecture: all odd primes are seen in order after 11. - Bill McEachen, Aug 05 2024

Crossrefs

Programs

  • Python
    from math import gcd, factorial
    def A356360(n): return (a:=(n<<1)-1)//gcd(a, a*sum(factorial(k) for k in range(n-2))+n*factorial(n-2)>>1) # Chai Wah Wu, Feb 26 2024

Formula

For n >= 3, the formula of the continued fraction is as follows:
(A051403(n-2) + A051403(n-3))/(2n - 1) = 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).
a(n) = (2n - 1)/gcd(2n - 1, A051403(n-2) + A051403(n-3)).
From the conjecture: Except for n = 5, a(n)= 2n - 1 if 2n-1 is prime, 1 otherwise.

A128060 a(n) = 2*n - numerator((2*n-1)^2/(2*(2*n)!)).

Original entry on oeis.org

-1, 1, 1, 1, 1, 9, 1, 1, 15, 1, 1, 21, 1, 25, 27, 1, 1, 33, 35, 1, 39, 1, 1, 45, 1, 49, 51, 1, 55, 57, 1, 1, 63, 65, 1, 69, 1, 1, 75, 77, 1, 81, 1, 85, 87, 1, 91, 93, 95, 1, 99, 1, 1, 105, 1, 1, 111, 1, 115, 117, 119, 121, 123, 125, 1, 129, 1, 133, 135, 1, 1, 141, 143, 145, 147
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Comments

Odd composite numbers with placeholders for primes between them.

Crossrefs

Programs

Formula

a(n) = 2*n - A128059(n).
a(n) = (A217983(n-1) * (2*n-1))/A160479(n) for n >= 3. - Johannes W. Meijer, Oct 25 2012
a(0) = -1, a(n) = gcd(2*n-1, (2*n-2)!), n > 0. - Wesley Ivan Hurt, Jan 05 2014

Extensions

More terms from Michel Marcus, May 23 2025

A145737 a(n) = square part of A145609(n).

Original entry on oeis.org

1, 5, 7, 1, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163
Offset: 1

Views

Author

Artur Jasinski, Oct 17 2008

Keywords

Comments

For squarefree parts see A145738. A128059 is a very similar sequence.

Crossrefs

Programs

Formula

a(n) = 2n+1 if 2n+1 is prime, 1 otherwise, for n > 1.
From Gary Detlefs, Oct 18 2011: (Start)
a(n) = Denominator(n!*(Sum_{k=1..n} k^3)/(Sum_{k=1..n} k^2))
= Denominator(n!*3*n*(n+1)/(2*(2*n+1))). (End)

A145738 a(n) = squarefree part of A145609(n).

Original entry on oeis.org

3, 1, 1, 761, 61, 509, 1171733, 8431, 39541, 55835135, 36093, 1347822955, 34395742267, 375035183, 9682292227, 586061125622639, 54062195834749, 40030624861, 2053580969474233, 1236275063173, 6657281227331
Offset: 1

Views

Author

Artur Jasinski, Oct 17 2008

Keywords

Crossrefs

Cf. A128059, A145609, A145738, A145737 (for square parts).

Programs

A347425 a(n) = Bernoulli(2*n) * (2*n+1)! if 2*n+1 is a prime, otherwise a(n) = Bernoulli(2*n) * (2*n)!.

Original entry on oeis.org

1, 1, -4, 120, -1344, 3024000, -1576143360, 101708006400, -2522591034163200, 6686974460694528000, -1287307431968882688000, 160078872315904478576640000, -53718579665963356985229312000, 574898901006059006921736192000000, -241364461951740682229320388129587200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 01 2021

Keywords

Examples

			Bernoulli(2*n) * (2*n)! = [ 1, 1/3, -4/5, 120/7, -1344, 3024000/11, -1576143360/13, 101708006400, -2522591034163200/17, 6686974460694528000/19, ... ].
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[PrimeQ[2 n + 1], BernoulliB[2 n] (2 n + 1)!, BernoulliB[2 n] (2 n)!]; Table[a[n], {n, 0, 14}]
    Table[Numerator[BernoulliB[2 n] (2 n)!], {n, 0, 14}]
    Table[Numerator[(2 n)!^2 SeriesCoefficient[x Coth[x/2]/2, {x, 0, 2 n}]], {n, 0, 14}]
    b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, k]^2 k! b[n - k]/(k + 1), {k, 1, n}]; a[n_] := Numerator[b[2 n]]; Table[a[n], {n, 0, 14}]
  • PARI
    a(n) = numerator(bernfrac(2*n)*(2*n)!); \\ Michel Marcus, Sep 01 2021

Formula

a(n) is the numerator of Bernoulli(2*n) * (2*n)! (for denominators see A128059).
a(n) is the numerator of (2*n)!^2 * [x^(2*n)] x * coth(x/2) / 2.
a(n) is the numerator of b(2*n) where b(n) = -Sum_{k=1..n} binomial(n,k)^2 * k! * b(n-k) / (k+1), b(0) = 1.

A273878 Numerator of (2*(n+1)!/(n+2)).

Original entry on oeis.org

1, 4, 3, 48, 40, 1440, 1260, 8960, 72576, 7257600, 6652800, 958003200, 889574400, 11623772160, 163459296000, 41845579776000, 39520825344000, 12804747411456000, 12164510040883200, 231704953159680000, 4644631106519040000
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2016

Keywords

Comments

The moments, i.e. E(X^n) = int(x^n * p(x), x = 0..infinity) for n > 0, of the probability density function p(x) = 2*x*E(x, 1, 1), see A163931, lead to this sequence.

Examples

			The first few moments of p(x) are: 1, 4/3, 3, 48/5, 40, 1440/7, … .
		

Crossrefs

Programs

  • Maple
    a := proc(n): numer(2*(n+1)!/(n+2)) end: seq(a(n), n=0..20);
  • PARI
    a(n) = numerator(2*(n+1)!/(n+2)) \\ Felix Fröhlich, Jun 09 2016

Formula

a(n) = numer(2*(n+1)!/(n+2))
a(n) = (n+1) * A090586(n+1)
a(2*n) = A110468(n) and a(2*n+1) = (2*n)!*A085250(n+1)/A128060(n+2).
Showing 1-6 of 6 results.