cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215658 Primes p such that the smallest positive integer k for which p# + k is square satisfies p# + k = k^2, where p# = 2*3*5*7*11*...*p is a primorial.

Original entry on oeis.org

2, 3, 5, 7, 17
Offset: 1

Views

Author

Jonathan Sondow, Sep 02 2012

Keywords

Comments

The corresponding values of k are 2, 3, 6, 15, 715 = A215659.
The equation p# + k = k^2 has an integer solution k if and only if 1 + 4*p# is a square.
Conjecture: Not the same sequence as A192579, which is finite.
When p is in this sequence, p# = k(k-1) is in A161620, the intersection of A002110 and A002378. - Jeppe Stig Nielsen, Mar 27 2018

Examples

			The smallest square > 17# = 510510 is 715^2 = 17# + 715, so 17 is a member.
		

Crossrefs

Programs

  • Mathematica
    t = {}; pm = 1; Do[pm = pm*p; s = Floor[Sqrt[pm]]; If[pm == s*(s+1), AppendTo[t, p]], {p, Prime[Range[100]]}]; t (* T. D. Noe, Sep 05 2012 *)
  • PARI
    for (n=1, 10, if (ceil(sqrt(prod(i=1, n, prime(i))))^2 - prod(i=1, n, prime(i)) - ceil(sqrt(prod(i=1, n, prime(i)))) == 0, print(prime(n)));); \\ Michel Marcus, Sep 05 2012
    
  • Python
    from sympy import primorial, integer_nthroot, prime
    A215658_list = [prime(i) for i in range(1,10**2) if integer_nthroot(4*primorial(i)+1,2)[1]] # Chai Wah Wu, Apr 01 2021

Formula

A145781(n) = A216144(n) if and only if prime(n) is a member.
a(n)# = A215659(n)*(A215659(n)-1).

A216144 Square root of smallest square greater than the product of first n primes.

Original entry on oeis.org

2, 3, 6, 15, 49, 174, 715, 3115, 14937, 80435, 447840, 2724104, 17442772, 114379900, 784149082, 5708691486, 43849291331, 342473913400, 2803269796342, 23620771158595, 201815957246322, 1793779464521956, 16342108667160302, 154171144824008980, 1518409682511777987
Offset: 1

Views

Author

Michel Marcus, Sep 02 2012

Keywords

Comments

Known values such that a(n)=A145781(n) are a(n)=2,3,6,15 and 715, i.e. for primes p=2,3,5,7 and 17.
(The relation a(n)=A145781(n) means that a(n)(a(n)-1) is a primorial number.) - M. F. Hasler, Sep 02 2012, - corrected by Jonathan Sondow, Sep 02 2012

Examples

			a(2) = sqrt(2*3 + A145781(2))= sqrt(2*3 + 3) = sqrt(9) = 3.
		

Crossrefs

Programs

  • PARI
    j=[];for (n=1, 30, p = prod(i=1, n, prime(i)); j=concat(j, floor(sqrt((ceil(sqrt(p))^2))));); j
    
  • PARI
    A216144(n)=sqrtint(prod(k=1,n,prime(k)))+1 \\ - M. F. Hasler, Sep 02 2012

Formula

a(n)=sqrt(A002110(n) + A145781(n)).
a(n)=A060797(n)+1. - M. F. Hasler, Sep 02 2012
Showing 1-2 of 2 results.