cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A215659 Values of k such that k*(k - 1) is a primorial number.

Original entry on oeis.org

2, 3, 6, 15, 715
Offset: 1

Views

Author

Jonathan Sondow, Sep 07 2012

Keywords

Comments

Values of k in A215658.
See A161620 for the primorial values. - Jeppe Stig Nielsen, Mar 27 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Product[Prime@ i, {i, PrimeNu@ #}] == # &[# (# - 1)] &] (* Michael De Vlieger, Apr 10 2018 *)
  • Python
    from sympy import primorial, integer_nthroot
    A215659_list = []
    for i in range(1,10**2):
        a, b = integer_nthroot(4*primorial(i)+1,2)
        if b:
            A215659_list.append((a+1)//2) # Chai Wah Wu, Apr 01 2021

Formula

a(n) * (a(n) - 1) = A215658(n)#, where p# = 2 * 3 * 5 * 7 * 11 * ... * p is a primorial, the product of the primes from 2 to p.

Extensions

Name improved by Jeppe Stig Nielsen, Mar 27 2018

A145781 Least m >= 0 which when added to primorial(n) yields a square.

Original entry on oeis.org

2, 3, 6, 15, 91, 246, 715, 3535, 21099, 95995, 175470, 4468006, 31516774, 192339970, 212951314, 5138843466, 76699112491, 103728576730, 3051100701874, 14417674958635, 245230361204214, 2296196521511806, 10940476546738414
Offset: 1

Views

Author

Keywords

Examples

			a(1)= 4 - 2 = 2, a(2)= 9 - 2*3 = 3, a(3)= 36 - 2*3*5 = 6, a(4)= 225 - 2*3*5*7 = 15, and a(5)= 2401 - 2*3*5*7*11 = 91.
		

Crossrefs

Programs

  • Mathematica
    (IntegerPart[Sqrt[#]]+1)^2-#&/@Rest[FoldList[Times,1,Prime[Range[30]]]]  (* Harvey P. Dale, Jan 14 2011 *)
  • PARI
    j=[];for (n=1,30,j=concat(j,(ceil(sqrt(prod(i=1,n,prime(i))))^2 -prod(i=1,n,prime(i)))));j

Formula

a(n) = A216144(n)^2 - A002110(n). - Jonathan Sondow, Sep 02 2012

Extensions

Definition shortened and clarified by Jonathan Sondow, Sep 02 2012

A161620 Primorial numbers of the form n^2 + n for some integer n.

Original entry on oeis.org

2, 6, 30, 210, 510510
Offset: 1

Views

Author

Daniel Tisdale, Jun 14 2009

Keywords

Comments

Primorial numbers m such that 4m+1 is a square.
Intersection of the sequences A002110 and A002378.
If it exists, a(6) > A034386(10^11). - Max Alekseyev, Oct 23 2011
The form is n^2 + n = n(n + 1), and the values n + 1 constitute A215659. - Jeppe Stig Nielsen, Mar 27 2018

Examples

			2 = 1*2 = 2
2*3 = 2*3 = 6
2*3*5 = 5*6 = 30
2*3*5*7 = 14*15 = 210
2*3*5*7*11*13*17 = 714*715 = 510510
		

Crossrefs

Programs

  • Mathematica
    p=1; Do[p=p*Prime[c]; f=Floor[Sqrt[p]]; If[p==f*(f+1), Print[p]],{c,1000}]
  • PARI
    N=10^8;si=30;q=vector(si,i,nextprime(i*N));a=vector(si,i,1);forprime(p=2,N,for(i=1,si,a[i]=(a[i]*p)%q[i]);v=1;for(i=1,si,if(kronecker(4*a[i]+1,q[i])==-1,v=0;break));if(v,T=1;forprime(r=2,p,T*=r);print1(T",")))
    
  • PARI
    pr=1;forprime(p=2,,pr*=p;s=sqrtint(pr);s*(s+1)==pr&&print1(pr,", ")) \\ Jeppe Stig Nielsen, Mar 27 2018

Formula

a(n) = A034386(A215658(n)). - Jeppe Stig Nielsen, Mar 27 2018

Extensions

Edited by Hans Havermann, Dec 02 2010
Edited by Max Alekseyev, Dec 03 2010
Edited by Robert Gerbicz, Dec 04 2010

A216144 Square root of smallest square greater than the product of first n primes.

Original entry on oeis.org

2, 3, 6, 15, 49, 174, 715, 3115, 14937, 80435, 447840, 2724104, 17442772, 114379900, 784149082, 5708691486, 43849291331, 342473913400, 2803269796342, 23620771158595, 201815957246322, 1793779464521956, 16342108667160302, 154171144824008980, 1518409682511777987
Offset: 1

Views

Author

Michel Marcus, Sep 02 2012

Keywords

Comments

Known values such that a(n)=A145781(n) are a(n)=2,3,6,15 and 715, i.e. for primes p=2,3,5,7 and 17.
(The relation a(n)=A145781(n) means that a(n)(a(n)-1) is a primorial number.) - M. F. Hasler, Sep 02 2012, - corrected by Jonathan Sondow, Sep 02 2012

Examples

			a(2) = sqrt(2*3 + A145781(2))= sqrt(2*3 + 3) = sqrt(9) = 3.
		

Crossrefs

Programs

  • PARI
    j=[];for (n=1, 30, p = prod(i=1, n, prime(i)); j=concat(j, floor(sqrt((ceil(sqrt(p))^2))));); j
    
  • PARI
    A216144(n)=sqrtint(prod(k=1,n,prime(k)))+1 \\ - M. F. Hasler, Sep 02 2012

Formula

a(n)=sqrt(A002110(n) + A145781(n)).
a(n)=A060797(n)+1. - M. F. Hasler, Sep 02 2012

A295266 Positive integers whose squares can be represented as the sum or difference of 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 17
Offset: 1

Views

Author

Tomohiro Yamada, Nov 19 2017

Keywords

Comments

In Chapter 7 of de Weger's tract, it is shown that there are no other terms.
More generally, de Weger exposited how one can determine all squares which can be represented as the sum or difference of k-smooth numbers for any given k and determined all integers whose squares can be represented as the sum or difference of 7-smooth numbers, among which the largest one is 14117^2 = 199289869 = 3^13 * 5^3 - 2 * 7^3.

Examples

			a(6) = 17 ; 17^2 = 288 + 1 = 2^5 * 3^2 + 1.
		

Crossrefs

Cf. A003586 (3-smooth numbers).
Coincides with A192579 and A215658 except the term 1.
Showing 1-5 of 5 results.