A215659
Values of k such that k*(k - 1) is a primorial number.
Original entry on oeis.org
2, 3, 6, 15, 715
Offset: 1
- Carol Nelson, David E. Penney and Carl Pomerance, 714 and 715, J. Recreational Math. 7:2 (1994), pp. 87-89.
-
Select[Range[10^5], Product[Prime@ i, {i, PrimeNu@ #}] == # &[# (# - 1)] &] (* Michael De Vlieger, Apr 10 2018 *)
-
from sympy import primorial, integer_nthroot
A215659_list = []
for i in range(1,10**2):
a, b = integer_nthroot(4*primorial(i)+1,2)
if b:
A215659_list.append((a+1)//2) # Chai Wah Wu, Apr 01 2021
A145781
Least m >= 0 which when added to primorial(n) yields a square.
Original entry on oeis.org
2, 3, 6, 15, 91, 246, 715, 3535, 21099, 95995, 175470, 4468006, 31516774, 192339970, 212951314, 5138843466, 76699112491, 103728576730, 3051100701874, 14417674958635, 245230361204214, 2296196521511806, 10940476546738414
Offset: 1
a(1)= 4 - 2 = 2, a(2)= 9 - 2*3 = 3, a(3)= 36 - 2*3*5 = 6, a(4)= 225 - 2*3*5*7 = 15, and a(5)= 2401 - 2*3*5*7*11 = 91.
-
(IntegerPart[Sqrt[#]]+1)^2-#&/@Rest[FoldList[Times,1,Prime[Range[30]]]] (* Harvey P. Dale, Jan 14 2011 *)
-
j=[];for (n=1,30,j=concat(j,(ceil(sqrt(prod(i=1,n,prime(i))))^2 -prod(i=1,n,prime(i)))));j
A161620
Primorial numbers of the form n^2 + n for some integer n.
Original entry on oeis.org
2, 6, 30, 210, 510510
Offset: 1
2 = 1*2 = 2
2*3 = 2*3 = 6
2*3*5 = 5*6 = 30
2*3*5*7 = 14*15 = 210
2*3*5*7*11*13*17 = 714*715 = 510510
- C. Nelson, D. E. Penney, and C. Pomerance, 714 and 715, J. Recreational Mathematics (1974) 7(2), 87-89.
-
p=1; Do[p=p*Prime[c]; f=Floor[Sqrt[p]]; If[p==f*(f+1), Print[p]],{c,1000}]
-
N=10^8;si=30;q=vector(si,i,nextprime(i*N));a=vector(si,i,1);forprime(p=2,N,for(i=1,si,a[i]=(a[i]*p)%q[i]);v=1;for(i=1,si,if(kronecker(4*a[i]+1,q[i])==-1,v=0;break));if(v,T=1;forprime(r=2,p,T*=r);print1(T",")))
-
pr=1;forprime(p=2,,pr*=p;s=sqrtint(pr);s*(s+1)==pr&&print1(pr,", ")) \\ Jeppe Stig Nielsen, Mar 27 2018
A216144
Square root of smallest square greater than the product of first n primes.
Original entry on oeis.org
2, 3, 6, 15, 49, 174, 715, 3115, 14937, 80435, 447840, 2724104, 17442772, 114379900, 784149082, 5708691486, 43849291331, 342473913400, 2803269796342, 23620771158595, 201815957246322, 1793779464521956, 16342108667160302, 154171144824008980, 1518409682511777987
Offset: 1
a(2) = sqrt(2*3 + A145781(2))= sqrt(2*3 + 3) = sqrt(9) = 3.
-
j=[];for (n=1, 30, p = prod(i=1, n, prime(i)); j=concat(j, floor(sqrt((ceil(sqrt(p))^2))));); j
-
A216144(n)=sqrtint(prod(k=1,n,prime(k)))+1 \\ - M. F. Hasler, Sep 02 2012
A295266
Positive integers whose squares can be represented as the sum or difference of 3-smooth numbers.
Original entry on oeis.org
1, 2, 3, 5, 7, 17
Offset: 1
a(6) = 17 ; 17^2 = 288 + 1 = 2^5 * 3^2 + 1.
Showing 1-5 of 5 results.
Comments