A145904 Square array read by antidiagonals: Hilbert transform of the Narayana numbers A001263.
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 40, 31, 9, 1, 1, 21, 85, 105, 51, 11, 1, 1, 28, 161, 295, 219, 76, 13, 1, 1, 36, 280, 721, 771, 396, 106, 15, 1, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1
Offset: 0
Examples
The array begins n\k|..0.....1.....2.....3.....4.....5 ===================================== 0..|..1.....1.....1.....1.....1.....1 1..|..1.....3.....5.....7.....9....11 2..|..1.....6....16....31....51....76 3..|..1....10....40...105...219...396 4..|..1....15....85...295...771..1681 5..|..1....21...161...721..2331..6083 ... Row 2: (1 + 3x + x^2)/(1 - x)^3 = 1 + 6x + 16x^2 + 31x^3 + ... . Row 3: (1 + 6x + 6x^2 + x^3)/(1 - x)^4 = 1 + 10x + 40x^2 + 105x^3 + ... .
Crossrefs
Programs
-
Mathematica
Table[1/(# + 1)*Sum[Binomial[# + 1, i - 1] Binomial[# + 1, i] Binomial[# + k - i + 1, k + 1 - i], {i, 0, k + 1}] &[m - k], {m, 0, 9}, {k, 0, m}] // Flatten (* Michael De Vlieger, Jan 15 2018 *)
-
Maxima
taylor(((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y),x,0,10,y,0,10); T(n,m,k):=1/(n+1)*sum(binomial(n+1,i-1)*binomial(n+1,i)*binomial(n+m-i+1,m+1-i),i,0,m+1); /* Vladimir Kruchinin, Jan 15 2018 */
Formula
Row n generating function: 1/(n+1) * 1/(1-x) * Jacobi_P(n,1,1,(1+x)/(1-x)) = N_n(x)/(1-x)^n where N_n(x) denotes the shifted Narayana polynomial N_n(x) = sum{k = 1..n} A001263(k)*x^(k-1) of degree n-1.
Conjectural column n generating function: N_n(x^2)/(1-x)^(2n+1).
The entries in row n are given by the values of a polynomial function p_n(x) at x = 0,1,2,... . The first few are p_1(x) = 2x + 1, p_2(x) = (5x^2 + 5x + 2)/2, p_3(x) = (2x + 1)*(7x^2 + 7x + 6)/6 and p_4(x) = (7x^4 + 14x^3 + 21x^2 + 14x + 4)/4. These polynomials appear to have their zeros on the line Re x = -1/2; that is, the polynomials p_n(-x) appear to satisfy a Riemann hypothesis. The corresponding result for A108625 is true (see A142995 for details).
Contribution from Paul Barry, Jan 06 2009: (Start)
The g.f. for the corresponding number triangle is:
1/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y.... (a continued fraction). (End)
This g.f. satisfies x^2*y*g^2 - (1-x-x*y)*g + 1 = 0. - R. J. Mathar, Jun 16 2016
G.f.: ((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y). - Vladimir Kruchinin, Jan 15 2018
T(n,m) = 1/(n+1)*Sum_{i=0..m+1} C(n+1,i-1)*C(n+1,i)*C(n+m-i+1,m+1-i). - Vladimir Kruchinin, Jan 15 2018
Comments